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NAFIPS '92, an international conference on fuzzy set theoty and applications, Is sponsored
by NAFIPS, in cooparation with:

National Aeronautics and Space Administration (NASA)

instituto Tecnologico de Morella ,

indian Society for Fuzzy Mathematics and Information Processing(ISFUMIP)
Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM
International Fuzzy Systems Association (IFSA) -

Japan Society for Fuzzy Theory and Systems

Microelectronics and Computer Technology Corporation (MCC)
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Fuzzy set theory has led to a large number of diverse applications. Recently, interesting
applications have been developed ‘which invoive the integration of fuzzy systems with
adaptive processes such as neural networks and genetic algorithms. NAFIPS '92 will be
direhcte? tc?ward the advancement, commercialiization, and engineering development of these
technologies.

The conference will consist ot both plenary sessions and contributory sessions. The plenary
sessions will be addressed by leading experts. Topics to be discussed at this conference
include the following:

Biomedical and Biochemlcal Issues

+ Business and Decision Making
» Commercial Products and Tools
« Computer Systems and Information Processing
» Control Systems
» Decision Analysis ’
» Foundations and Mathematical Issues .
» @Genetic Algorithms
e Hardware .
» Image Procassing and Vision
» Neural Networks
e Optimization
« Path Planning
» Pattern Recognition
» Robotics
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" TUTORIALS

Tutorials by leading experts will be provided on December 14, 1992.

18 ‘.' 5 M
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8:00 — 9:40 introduction to Fuzzy Sets and Approximate Reasoning
- RONALD R. YAGER, lona College, New Rochelle, NY, USA
9:50 - 11:30 Fuzzy Intelligent Information Systems

M. ZEMANKOVA, NATIONAL Science Foundation, Washington, DC, USA
11:30 - 12:30 Lunch

12:30 - 2:10 Fuzzy Logic In Expert System and its Applications for IE/OR/MS
1.B. TURKSEN, University of Toronto, Toronto, ON, CANADA
2:20 4:00 Fuzzy Control snd its Applications
M. SUGENO, Tokyo Institute of Technology, Yokohama, JAPAN
4:10 - 5:50 Fuzzy Hardware Design and its Applications
K. HIROTA, Hosei University, Tokyo, JAPAN
| "CONFERENWCE ]
Tuesday, December 15,1992
8:00 Welcoming Remarks
8:15-9:00 Plenary Speech
PROFESSOR LOTFI ZADEH, Unlv_orslty of California at Barkeley
9:00 - 12:00 Paraliel Sessions

An Analysis of Possible Applications of Fuzzy Set Theory to the Credibility Theory
KRZYSZTOF OSTASZEWSKI, University of Louisville, Loulsvilie, KY
WALDEMAR KARWOWSKI, University of Louisville, Louisville, KY

Estimations of Expectedress and Potentlal Surprise In Possibllity Theory
HENRI PRADE, Universite Paul Sabatier, Toulouse Cedex, FRANCE
RONALD R. YAGER, lona College, New Rochetie, NY

Comparison of Specificlty and Information for Fuzzy Domains
ARTHUR RAMER, University of New South Wales, Kensington, AUSTRALIA

The Axlomatic Definition of a Linguistic Scale Fuzziness Degree, its Major Properties and
Applications

ALEXANDER P. RYJOV, Soviet Association of Fuzzy Systems, Moscow, RUSSIA

How to Select Combination Operators for Fuzzy Expert Systems Using CRI
|.B. TURKSEN, University of Toronto, Toronto, Ontario, CANADA
Y. TIAN, University ot Toronto, Toronto, Ontario, CANADA

Approximate Reasoning Using Temminological Models

JOHN YEN, Texas A&M University, College Station, TX
NITIN VAIDYA, Texas A&M University, College Station, TX
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Quantitative Analysis of Properties and Spatial Reistions of Fuzzy image Regilons
RAGHU KRISHNAPURAM, University of Missourt, Columbia, MO
JAMES M. KELLER, University of Missouri, Columbia, MO
YBING MA, Universtty of Missourd, Columbia, MO

A Fuzzy Clustering Algorithm to Detect Planar and Quadric Shapes
RAGHU KRISHNAPURAM, Universtty of Missourd, Columbia, MO
HICHEM FRIG?*  University of Missouri, Columbia, MO
OLFA NASRA: .|, University of Missouri, Columbia, MO

A Fuzzy Mesasure Approasch to Motion Frame Analysis for Scene Detection
ALBERT B. LEIGH, McDonnell Douglas Space Systems, Houston, TX
SANKAR K. PAL, Indian Statistical lnstlug. Calcutta, INDIA

Automatic Rule Generation for High-Level Vision
FRANK CHUNG-HOON RHEE, University of Missouri, Columbia, MO
RAGHU KRISHNAPURAM, University of Missouri, Columbia, MO

Encoding Spatisl images - A Fuzzy Set's Theory Approach
LESZEK M. SZTANDERA, University of Toledo, Toleco, OH

image Segmentation Using LVQ Clustering Networks
ERIC CHEN-KUO TSAO, The University of West Florida, Pensacola, FL.
JAMES C. BEZDEK, The University of West Florida, Pensacola, FL.
NIKHIL R. PAL, The University of West Florida, Pensacola, FL

12:00 - 1:00 Lunch

1:00 - 3:30 Paralie! Sessions

A Neuro-Fuzzy Architectuve for Real-Time Applications
P. A. RAMAMOORTHY, University of Cincinnati
SONG HUANG, University of Cincinnati, Cincinnati, OH

A Composite Self Tuning Strategy for Fuzzy Control of Dynamic Systems
C-Y SHIEH, University of Missouri, Columbia, MO
SATISH S. NAIR, University of Missouri, Columbia, MO

A Sell-Learning Rule Base for Command Following in Dynamical Systems
WEI K. TSAI, University of California at lrvine, Irvine, CA
HON-MUN LEE, University of Callfornia at Irvine, lrvine, CA
ALEXANDER PARLOS, Texas ASM University, College Station, TX

Adaptive Defuzzification for Fuzzy Systems Modeling
RONALD R. YAGER, lona College, New Rochelle, NY
DIMITAR P. FILEV, lona Coflege, New Rochelle, NY

Jesign issues of a Reinforcement-Based Seif-Learning Fuzzy Controller for Petrochemical
>rocess Control

JOHN YEN, Texas A&M University, College Station, TX
HAQJIN WANG, Texas A&M University, College Station, TX
WALTER C. DAUGHERITY, Texas A&M Un'versity, College Station, TX
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Learning Characteristics of a Space Time WNeural Network as a Tether Skiprope Obseiver
ROBERT N. LEA, NASA/Johnson Space Center, Houston, TX
JAMES A. VILLARREAL, NASA/Johnson Space Center, Houston, TX
JANI YASHVANT, Togal Infralogic inc., Houston, TX :
CHARLES COPELAND, Loral Space Systems, Houston, TX

Clustering of Tethered Sateliite System Simuistion Data by an Adaptive Neuro-Fuzzy
Algorithm

SUNANDA MITRA, Texas Tech University, Lubbock, TX

SURYA PEMMARAJU, Texas Tech University, Lubbock, TX

Character Recognition Using a Neural Network Model with Fuzzy Representation
NASSRIN TAVAKOLI, University of North Carolina at Chariotte, Charlotte, NC
oAvcsosemw.ngmnyomomcmachamm.

Chartotie.NC - {

Designing a Fuzzy Scheduler for Hard Real-Time Systems
JOHN YEN, Texas A&M University, College Station, TX
JONATHAN LEE, Texas AZM University, College Station, TX
NATHAN PFLUGER, Texas ASM University, College Station, TX
SWAMI NATARAJAN, Texas-ASM University, College Station, TX

WARP: Weight Assoclative Rule Processor A Dedicated VLS! Fuzzy Loglc Megacei!
ANDREA PAGNI, SGS-Thompson Microelectronics, Agrate Brianza (MI) ITALY
R. POLUZZI, SGS-Thompson Microelectronics, Agrate Brianza (M) ITALY
G. G. RIZZOTTO, SGS-Thompson Microelectronics, Agrate Brianza (MI) ITALY

Wednesday, December 16,1992
8:00 - 8:45 " Plenary Speech

Plero Bonissone, "Fuzzy Logic Control: From Development to
Deployment (with an Applicstion to Alrcraft Engine Control)”

8:45 - 10:45 Parallel Sessions

Evaluation of Fuzzy Inference Systems Using Fuzzy Least Squares
JOSEPH M. BARONE, Loki Software, Inc., Liberty Cormer, NJ

A Model for Amaigamation In Group Decision Msking
VINCENZO CUTELLO, Consorzio per ta Ricerca sulla Microelettronica del Mezzogiomo, Catania, ITALY
JAVIER MONTERO, Complutense University, Madrid, Spain

Fuzzy Forecasting and Decislon Making In Short Dynamic Time Series
EFIN JA. KARPOVSKY, Odessa Institute of National Economy, Odessa, UKRAINE

Decision Analysis With Approximate Probabliities
THOMAS WHALEN, Georgia State University, Allanta, GA
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Distributed Traific Signal Control Using Fuzzy Log
STEPHEN CHIJ, Rockwell

intemational Science Center,
Thousand Oaks, CA

Intelligent Virtual RoaiRy In tho Setiing of Fuzzy Sets
JOHN T. DOCKERY, George Mason , Falrtax, VA
DAVID LITTMAN, Gaorye Mason Universlly, VA

Fuzzy Neura: Network Methodology Appiled to Madical Diagnosis
MARIAN B. GORZALCZANY, Technical University of Kieice, Kieice, POLAND
MARY DEUTSCH-MCLEISH, University of Gueiph, Gualph, Ontario, CANADA

11:00 - 12:00 Paralisl Sessions

An Experimental Methodology for a Fuzzy Set Praference Model
1.B. TURKSEN, UnivereRy of Toronto, Torcnso, ON, CANADA
IAN A. WILLSON, University of Toronto, Toronto, ON, CANADA

A Fuzzy Set Preference Model for Market Share Analysis
1.B. TURKSEN, University of Toronto, Toronto, ON, CANADA
IAN A. WILLSON. University ot Toronto, Toronto, ON, CANADA

Information Compression in the Context Model
JORG GEBHARDT, Technical University of Eraunschweig, Braunschweig, GERMANY
RUDOLF KRUSE, Technical University of Braunschweig, Braunschweig, GERMANY
DETLEF NAUCK, Technical Univarsity of Braunschweig, Braunschweig, GERMANY

Fuzzy Knowledge Base Construction Through Bellet Networks Based on Lukaslewicz Logic
FELIPE LARA-ROSANO, Universidad Nacional Autonoma de Mexico, Mexico DF, MEXICO

12:00 - 1:00 Lunch
1:00 - 3:30 Parallel Sassions

Inteliigent Fuzzy Controller for Event-Driven Real Time Systems

JANOS GRANTNER, Universily of Minnesota, Minneapolis, MN
MAREK PATYRA, University of Minnesota, Minneapolis, MN
MARIAN S. STACHOWICZ, University of Minnesota, Minneapoks, MN

Fuzzy Coordinator in Control Problems
A. RUEDA, University of Manitoba, Winnipeg, Manitoba, CANADA
W. PEDRYCZ, University of Manitoba, Winnipeg, Manitoba, CANADA
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Tuning a Fuzzy Controlier Using Quadratic Responss Surfaces
BRIAN SCHOTT, Georgia State University, Atianta, GA
THOMAS WHALEN, Georgia State University, Atianta, GA

The Cognitive Bases for the Design of a New Class of Fuzzy Logic Controliers: The Clearress
Transformation Fuzzy Logic Controlier )
- LABIB SULTAN, York University, Toronto, Ontario, CANADA

TALIB JANABI, Mentalogic Systems Inc., Markham,

Ontario, CANADA

A Fuzzy Control Design Cass: The Fuzzy PLL
H.N. TEODORESCU, Polytechnic instiute of lasi, ROMANIA
- 1. BOGDAN, Polytechnic Institute of lasi, ROMANIA

Adding Dynamic Rules to Selt-Organizing Fuzzy Systems
CATALIN V. BUHUSI, Romanian Academy, Calea Copou, lasi, ROMANIA

Fuzzy Leaming Under and About an Untamiliar Fuzzy Teacher
BELUR V. DASARATHY, Dynetics, Huntsville, AL

Some Problems with the Design of Self-Learning Management Systems
ZINY FLIKOP, NYNEX Science and Technology, Inc.,
White Plains, NY
A Neural Fuzzy Controller Learning by Fuzzy Error Propagation

DETLEF NAUCK, Technical University of Braunschweig, Braunschweig, GERMANY
RUDOLF KRUSE, Technical University of Braunschweig, Braunschweig, GERMANY

Thursday December 17, 1992
8:00 - 10:00 Parallel Sessions

Determining Rules for Closing Customer Service Centers: A Public Utility Company's Fuzzy
Decision .
ANDRE DEKORVIN, University of Houston - Downtown, Houston, TX
MARGARET F. SHIPLEY, University of Houston - Downtown,
Houston, TX
ROBERT N. LEA, NASA/Johnson Space Center, Houston, TX

Fuzzy Simulation In CTr:ncurrent Enginesring
- A. KRASLAWSKI, Lappeensanta University of Technology, Lappeenranta, FINLAND
L. NYSTROM, Lappeenranta University of Technology, Lappeenranta, FINLAND

- inverse Problems: Fuzzy Representation of Uncertainty Generates a Reguilarization
V. KREINOVICH, University ot Texas at El Paso, E| Paso, TX
CHING-CHUANG CHANG, Universiy of Texas at El Paso, El Paso, TX
L. REZNIK, Vicioria University of Technoogy, MMC Melboume,
VIC 3000, AUSTRALIA
G. N. SOLOPCHENKO, St. Petersburg Technical Universily, St. Petersburg, RUSSIA
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Quantification of Human Responses
RALPH C. STEINLAGE, University of Dayton, Dayton, OH
T. E. GANTNER, University of Dayton, Dayton, OH
P. Y. W. LM, Boise Cascade R&D, Portiand, OR

Non-Scalar Uncertainty ‘
SALVADOR GUTIERAREZ-MARTINEZ, instituto Tecnologico de Morelia, Morelia, MEXICO

Comparison Between the Performance of Two Classes of Fuzzy Controllers
TALIB H. JANABL, Mentalogic Systems inc., Markham, Ontario, CANADA .
L.H. SULTAN, York University, Toronto, Ontario, CANADA

Possibllistic Measurement and Set Statistics
CLIFF JOSLYN, SUNY-Binghamton, Portiand, ME .

The Fusion of Information via Fuzzy integraticn

JIM KELLER, University of Missouri, Columbia, MO
HOSSEMN TAHANI, University of Missourl, Columbia, MO

10:15 - 11:45 Parallel Sessions

On the Evaluation of Fuzzy Quantified Queries In a Database Management System
PATRICK BOSC, IRISA/ENSSAT, Lannion, Cedex, FRANCE
OLIVIER PIVERT, IRISAVENSSAT, Lannion, Cedex, FRANCE

A Fuzzy Case Based Reasoning Tool for Model Based Approach to Rocket Engine Heaith
Monitoring

SRINIVAS KROWVIDY, University of Cincinnati, Cincinnati, OH

ADAM NOLAN, University of Cincirnati, Cincinnati, OH

YONG LIN HU, University of Cincinnati, Cincinnati, OH

WILLIAM G. WEE, University of Cincinnati, Cincinnati, OH

A High Performance, Ad-Hoc Fuzzy Cuery Processing System for Relational Databases
W.H. MANSFIELD, Belicore, Cambridge, MA, USA
ROBERT M. FLEISCHMAN, BBN, Cambxidge, MA, USA

'sm%?'gs-»»ﬁf.zvﬁ;ﬁs INZRUD

Genetic Algorithms In Adaptive Fuzzy Control
C. LUCAS KARR, U. S. Department of Interior Buraau of Mines, Tuscaloosa, AL

é Gonctllc Algorithms Approach for Altering the Membership Functions in Fuzzy Logic

ontrollers
HANA SHEHADEH, LinCom Corporation, Houston, 7X , -
ROBERT N. LEA, NASA/Johnson Space Center, Houston, TX

Fuzzy Multiple Linear Regression - A Computational Approach
C.H. JUANG, Clemson University, Clemson, SC
X.H. HUANG, Clemson University, Clemson, SC
J.W. FLEMING, Clemson University, Clemson, SC
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12:00 - 1:00 Lunch

1:00 - 4:30 Paraliel Sessions

Incorporation of Varying Types of Temporsl Data In a Neural Ne‘work
M. E. COHEN, Callfornia State University, Fresno, CA
D.L. HUDSON, California State University, Fresno, CA

Fuzzy Operators and Cyclic Behaviour in Formal Neural Networks
E. LASOS, Semmeiweis University Medical School, Budapest, HUNGARY
A V. HOLDEN, The University of Leeds, Leeds, UK
J. LACZKO, Ludwig Maximilien University, Munchen, GERMANY
A. S. LABOS, Semmeiweis University Medical Schoo!, Budapest, HUNGARY

Neural Netwoiks: A Simulation “Tachnique Under Uncertainty Conditions
LUISA MCALLISTER, Moravian College, Bethlehem, PA ‘

incomplets Fuzzy Data Processing Using Antificlal Neural Network
MAREK J. PATYRA, University of Minnesota, Duluth, MN

Stochastic Architecture for Hoptleld Neural Nets
SANDY PAVEL, Polytechnical Institute of lasi, lasi, ROMANIA

Hierarchical Model of Mstching
W. PEDRYCZ, University of Maniioba, Winnipeg, Manitoba, CANADA
EUGENE ROVENTA, York Uriversty, Toronto, Ontario, CAMADA

A Conjugate Gradients/Trust Regions Algorithm for Tralning Muitllayer Perceptrons for
Nonlinear Mapping
RAGHAVENDRA ‘<. MADYASTHA, Rice University, Houston, TX
BEHNAAM AAZHANG, Rice University, Houston, ™
TROY F. HENSON, 1BM Corporation, Houston, TX
WENDY L. HUXHOLD, iBM Corporation, Houston, TX

On Probability-Possibitity Transformations
GEORGE KLIR, State University of New York, Binghamton, NY
BEHZAD PARVIZ, California State Univereity, Los Angeles. CA

inference In Fuzzy Rule with Conflicting Evidence
LASZLO T. KOCZY, Technical University of Budapest, Zudapest, HUNGARY

Gaussian Membershlp Functions are Most Adequate In Representing Uncertainty In
Measurements
V. KREINOVICH, University of Texas at El Paso, El Paso, ™
C. QUINTANA, University of Michigan at Ann Arbor, Ann Arbor, MI
L. REZNIK, Victoria Universtty of Technology, MMC Meboume,
VIC 3000, AUSTRALIA

Applying the Metric Truth Approach to Fuzzified Automated Reasoning
VESA A. NISKANEN, University of Heisinki, Helsinki, FINLAND

Life Insurance Risk Assessment Using a Fuzzy Logic Expert System

L. A. CARRENO, Togai InfraLogic, Houston, TX
R. A. STEEL, Togai Infralogic, Houston, TX
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CONTENTS

An Analysis of Possible Applications of Fuzzy Set Theory to the Actuarial Credibiily Theory.
Estimations of Expectedness and Potential Surprise in Possibility Theory
Comparison of Specificity and Information for Fuzzy Domains -
vﬁe‘xiomaticbeﬁnlbno!aunumic&nb Fuzziness Degree, its Major Properties and Applications ..............cu....
How to Select Combination Operators for Fuzzy Expert Systems Using CRI
Approximate Reasoning Using Terminological Models
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A Fuzzy Measure Approach 1o Motion Frame Analysis for Scene Detection
Automatic Rule Generation for High-Level Vision -
Encoding Spatial Images - A Fuzzy Set Theory Approach
Image Segmentation Using LVQ Clustering Networks
A Neuro-Fuzzy Architecture for Real-Time Applications
A Composite Self Tuning Strategy for Fuzzy Control of Dynamic Systems.........
A Selt-Leaming Pule Base for Command Following in Dynamical Systems
Adaptive Defuzzification for Fuzzy Systems Modeling }
Design issues of a Reinforcement-Based Sell-Leaming Fuzzy Controller for Petrochemical Process Controt ........... -

Leaming Characteristics of a Space-Time Neural Network as a Tether 'sam Observer”
Clustering of Tethered Sateliite System Simulation Data by an Adaptive Neuro-Fuzzy Algorithm
Character Recognition Using a Neural Network Model with Fuzzy Representation
Designing a Fuzzy Scheduler for Hard Real-Time Systems
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Evaluation of Fuzzy Inference Systems Using Fuzzy Least Squares
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Fuzzy Forecasting and Decision Making in Short Dynamic Time Series
_ Decision Analysis With Aproximate Probabilities
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Ad(ﬁhg Dynamic Rules to Self-Organizing Fuzzy Systems

Catalin V. Buhusi
Romanian Academy, Institute for Computer Science,
Calea Copou nr.22A, 1AS] 6600, ROMANIA

Abstract

This paper develops 2 Dynamic Self-Organizing Fuzzy System (DSOFS) capable of adding,
removing and/or adapting the fuzzy rules and the fuzzy reference sets. The DSOFS background
consists in a self-organizing neural structure with neuron relocation features which will develop
a map of the input-output behaviour. The relocation algorithm extends the topological ordering
concept. Fuzzy rules (neurons) are dynamically added or released while the neural structure
leamns the pattern. The DSOFS advantages are the automatic synthesis and the possibility of
parallel implementation. One could remark a high adaptation speed and the reduced number of
neurons needed in order to keep errors under some limits. The computer simulation results in
a nonlinear systems modelling application are shown.

keywords: fuzzy systems, neural networks, neuron relocation, Kohonen self-organizing
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procedure, LMS procedure, feature map, basin of attraction, lateral feed-back.

1. Introduction

The promising link between the fuzzy
reasoning and the massively parallel
calculus, i.e. fuzzy neural networks, became
an important topic of the fuzzy systems
research during the last years.

Learning on membership functions and the
fuzzy rules are major problems in
synthesizing a fuzzy system. In this paper
we are interested in the automatic synthesis
of reference sets and fuzzy rules. One of the
classes of fuzzy systems which gives a
solution to thesc problems is based on
self-organizing neural structures which map
the desired topological relations between the
fuzzy system input and output. Some
solutions are briefly discussed in section 111.

This paper presents a Dynamic Self-
Organizing Fuzzy System (DSOFS) capable
of adding, adapting and/or removing the
fuzzy rules and the reference fuzzy sets. The
fuzzy system synthesis is based on a

modifiable adaptive neural network using a
neuron relocation algorithm as a leaming
method. This algorithm extends the
topological ordering concept {4,7]. In the
adaptation process neurons are added and/or
disposed while learning the pattern. This is
the neural equivalent of modifying the fuzzy
system rules. The relocation algorithm
supposes for every fuzzy rule (neuron) a
basin of attraction as a base for the fuzzy
reference sets construction.

II. The Dynamic Self-Organizing
Fuzzy System Definition

In order to fix the ideas we will denote by
R® the input universe of discourse and by
R"™ the output universe of discourse, where
n and m are fixed integers.

The DSOFS input and output are vectors
in Rx...xR. We will denote such vectors as
xv Y9 or {xl’ K2y eoey xn}t {)’n )’z. seey Ym}'

The rules of the DSOFS have the
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following form:

if X is X" then Y is Y' with b’ (1)
where X ER®" is the input vector; YER™ is
the output vector; X'ER® is the input
reference vector for the rule number r;
Y € R"™ is the output reference vector for the
rule number r; b° is the basin of attraction of
the rule number r, *ER".

The truth degree w* of any rule r is given
by:

w' = FbI(d(X, X)) )

where b* is the basin of attraction of the rule
number r; d(*,*) is the Euclidian distance;
F](*) is a family of functions of
parameter b* such that:
(i) F[b7: R*-R, VO'ER";
(i) F[b7] is monotone decreasing Yb'ER™;
(iii) F[b'O0) = 1, vb'€R";
(iv) if b; > b; then F[b](2) > F[b](2), vzER*
and b;,b;€ER"

The fuzzy system output Y is computed

©ovia:

N N
y, = Zw™*y' / Zw' , i=l..m 3)
r=1 r=1
wher2 N is the number of rules; w', y* have
their previous meanings.

III. The Dynamic Self-Organizing
Fuzzy System Synthesis

A fuzzy system synthesis has to solve two
problems: construction of the fuzzyfier, i.e.
‘obtaining the reference fuzzy sets of the
system, for both input and output, and
construction of the fuzzy rules. These
problems find particular solutions when
fuzzy reasoning is linked on neural
networks, and especially on self-organizing
neural networks.

Yamaguchi et al. ([13] proposed

unsupervised learning the membership
functions using the Learning Vector
Quantization procedure [8], and the if-then-
rule part using Bidirectional Associative
Memories (BAMs) to show the relationships
interpreted from fuzzy rules. Another
approach made by Takagi and Hayashi [11]
is using two kinds of neural networks, for
the raembership functions and for the fuzzy
system output, networks whose adaptation
and optimization are made by clustering

. algorithms. Bezdek. proposed recently [1] a
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fuzzy Kohonen self-organizing system, an
approach linking the Kohonen self-
organizing procedure and fuzzy systems.
Such a link was also proposed in [2].

One of the backdraws of the Kohonen self-
organizing procedure, and of others
clustering algorithms as well, is that the first
engineering decision to be made is how
many nodes should be used.

The Dynamic Self-Organizing Fuzzy
Systems solve all these problems, based on
a self-organizing neural network with neuron
relocation features. Through the "learning”
stage, the fuzzy rules are changed by
adapting both input and output reference
vectors and their basins of attraction. If
necessary, new rules will be added and/or
the old ones removed. The output of the
fuzzy system will be therefore refined
through an adaptation algorithm. This
adaptation is made such that the energy of
the difference between the DSOFS output
and a desired sequence of outputs is
minimized. The used adaptation algorithm is
the well-known Least Mean Square (LMS)
algorithm for adaptive linear combiners
(12].

HI.1. The Neuron Relocation
Self-Organizing Procedure

A neural network implements the
behaviour rules in the net weights. The
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DSOFS
S output Y
output reference fuzzy sets Yr |
T Conclusions
Neural Relocation (Xr, ¥r) L
Self~Organizing I1f-Then Rules
Network
|
L conditions
input reference fuzzy sets Xr
! input X

Fig.1 The DSOFS and the Neural Relocauon Network

adaptation algorithm proposed in [4,7] by
Kohonen is based on lateral feed-back
concept. Networks using this biologically
motivated process will behave such that
network outputs form clusters around the
excitation input local maxima. Such a neural
structure supposes constant number of
neurons, free of the information conveyed
by the pattern, [4], in the sense of the
topological distribution. Thus, a network
with a given number of neurons could
obviously hold less information for a
nonuniform input distribution in opposition

" to a uniform one.

Self Organizing Neuron
Relocation Procedure
for N clusters

Neural net has N neurons
corresponding to the fuzzy
system rules, and n+m
inputs corresponding to
fuzzy reference vectors

SRR .

input vector output vector
rig.2 The Self-Organizing Neuron
Relocation Procedure (Block Scheme)

On the contrary, a dynamical neural
structure [3] could be distinguished by a
neuron adding-releasing character as an
aspect of the pattern novelty features. The
DSOFS input-output mapping will be

obtamed via a self-orgamzmg neuron
relocation procedure which adapts the
number of neurons (fuzzy rules), the weights
and the neurons basin of attraction, forming
clusters around the best matching neuron
(fuzzy rule). We further propose a clustering
algorithm which increases the adaptation
speed and adapts the required number of
fuzzy rules.

We will work with a neural net containing
a variable number of neurons, equal to the
number of fuzzy rules of the DSOFS, i.e.
N. The behaviour of the DSOFS consists in
the pairs {X*, Y’} and in their basin of
attraction b’. In the adaptation stage the
input-output pair {X, Y} will feed the neural
network which will map the input-output
behaviour of the DSOFS in the net weights.
These weights are the reference vectors of
the fuzzy system {X', Y'}.

In the followings we will use the Euclidian
distance as a measure of similarity.

The relocation algorithm is based on a
dynamical neuron ailocation in terms of the
input distribution specificity. Therefore, we
propose the insertion of a new rule, i.e. of
a new neuron, while the input is outside the
basin of attraction of every rule in the actual
set of rules. A rule will be removed if it is
inside the basin of attraction of another rule.
If none of the above, the rule adaptation
process continues in order to build the
reference fuzzy vectors, i.e. the neural
feature map.
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We will denote by N the variable number

of neurons, each one represented by the

radius of the basin of attraction b’, varying
between two fixed limits B,,, and B,,,, and
n+m connection weights h; between the
input i, i=1..n+m, and the r-th neuron. In
fact, every ordered set {h,,, ..., hy,n,} may
be regarded as a kind of image that shall be
maiched against the input vector {x,, ...X,.
Yis ooos Ym}

a. Initialize Structure
Initialize N with N,, b* with B, h, with
small random values.

b. Develop Background
Train the network in order to produce the
feature map formation via the successive
presentation of some n+m samples from the
pattern, breaking the process before the
convergence phase, [4]. This step gives a
background to the network for future
adaptation and avoids an insertion explosion
(see section IV).

c. Present New Sample
Present input vector Z={X, Y} and
compute the Euclidian distance to the N
neurons:

n+m
dg) = sqrt( T l(hij'zij)z)v j=L.N 4
1=

d. Select Best Matching Neuron

Select the neuron k such that:

d(k) = min {d()}, j=1..N (5)

e. Insert New Neuron
If d(k)>B,,, then insert the p=N+1 -th
neuron such that:

h, = 2, i=l..n+m 6

Update the number of neurons N, and repeat
by going to step c.

f. Adapt Network
If b* <d(k) <B,,, then adapt the network in
order to yield the characteristic feature map
(7). Then repeat by going to step c.

The weights will assunie new values in the
process formally specified by:

ahy/ar = f(t)y*@z-hy), i=1..n+m, jENb(K,1)
dhy/at = 0, otherwise )

where k denotes the neuron with the best
matching between the input {X, Y} and the
weights; Nb(k,t) denotes a time decreasing
neighborhood of the k-th neuron; f(t)
denotes a slowly decreasing function of
time, determined by experience.
g. Release Neuron

If d(k)<b* then increment the basin of
attraction of the best matching neuron:

b* =b* + ¢ >0 (8)

Verify if some neuron is inside the basin of
attraction of the k-th neuron’s and if
n+m
sqrt( T (5-2°)) < bk, 1<p=<N, p#k (9)
i=1
remove n<uron p and update the number of
neurons. Repeat by going to step c.

eoe

This algorithm will provide the fuzzy
rules, i.e. the neurons with their basin of
attraction, and the fuzzy reference vectors,
i.e. the pairs {X', Y'} consisting in the
weights h;, of the network.

II1.2. The DSOFS Refined
Synthesis via LMS Adaptation
Procedure

The synthesis of the fuzzy system via the
self-organizing neuron relocation gives only
a mean estimation of the pairs {X', Y'}. The
reference fuzzy sets X and Y’ may be
considered satisfactory and the computer
simulations showed that the basic properties
of the input-output behaviour are well
preserved by neural learning. A great
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X - D(k)
— - The Model -
\_ - .
H Dynamic Y (k)
Self-Organizing - b
Fuzzy System -
IL E(k)

Fig.3 The LMS Adaptation (Block Scheme)

improvement may be obtained by adapting
the output reference fuzzy sets such that the
fuzzy system output will reach the desired
output [2]. A classical adaptation algorithm
is the LMS procedure. The block scheme of
the LMS adaptation is depicted in Fig.3.
Suppose that we have at the moment k,
D(k)ER™ the desired output vector, and
Y (k) ER™ the actual fuzzy system output.
The error vector E(k) is given by:

E(k) = D() - Y(k) (10
The LMS adaptation rules are:

yik+1) = y(k) + p*e(k)*a'(k),
i=1l..m, r=1..N (D

where u is the adaptation factor; k is the
iteration number; ‘(" is given by:
N
a'(k) = w'(k) / £ w'(k), r=1..N (12)
r=1
where w'(k) is the truth degree of the fuzzy
rule number r.

"IV. About The Neuron Relocation

Algorithin

The neural relocation algorithm presented
above may be matched against other
clustering algorithms.

The complexity level is the same as
Kohonen's procedure. Nevertheless, after

- the developing background stage, in the

neural relocation algorithm the “ieamning by
insertion® method will reduce the time
needed in order to adapt the network,
because it is worth copying the input-output
behaviour than adapt the weights. If a fuzzy
rule is no longer needed (i.e. the rule is
inside the basin of attraction of another rule)
it will be removed, so the complexity
diminish.

Of course, in th= above algorithm could be
inserted a num’.er of neurons equal to the
number of iterations. This can be balanced
by changing the maximum basin radius B,,,.
The maximum radius B, is important in
both minimizing the errors and the number
of neurons. The minimum basin radius B,
may be chosen to be null or a small pos. ‘e
value, contributing only at the convergence
time.

The simulation results showed the
background developing stage to be very
important in the neuron cost. If this stage is
overstepped, the adaptation will evolve such
that the initial iterations will add random
neurons and it will take some time to
remove some wrong positioned ones. This
stage will form a basis on which the
relocation features act well. The initial
number of neurons N, has a similar
importance in the neuron cost. it can be
null, but this is not recommended.

The Grossberg ART net [5] has also the
feature of inserting neurons based on a
parumeter called vigilance. The same
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problems (adding too many nodes or having
too little discrimination) arise. In opposition
to ART, the proposed model uses a
parameter controlling the insertion of
neurons ,i.e. B,,,, and also a number of N
parameters controlling the adaptation and
deletion of the neurons (fuzzy rules), i.e. b,
r=1..N. The B,,, parameter is fixed as the
vigilance is in the ART model, but the b
are adaptive parameters.

Our simulations showed the time needed to
adapt the net to be at least 25% lower than
the Kohonen self-organizing method, and the
number of neurons needed in order to
represent the input-output behaviour
diminished at about half. This can be
explained by the "insertion" effect and the
radius of attraction which can substitute
neurons.

V. An application: Nonlinear
System Modelling

We have applied DSOFS in a nonlinear
system modeling application. This problem
it is really suited to the DSOFS. It involves
a model and a fuzzy system which will
*learn” the behaviour of the modei. The
input and the output of the DSOFS are
suited as the same dimensions as the model.
In the first step of the synthesis a neural
network "learns” the behaviour of the
model. This phase will give us the reference
vectors, the number of fuzzy riles and their
basins of attraction. The output reference
vectors will be adapted through LMS
procedure in the second step of the synthesis
in order to obtain a better resemblance to
the model.

In the computer simulations that we further
present we have used a multi-input single
output nonlinear model with the input-output
behaviour depicted in Figure 4, described
by:

y = exp(-x,’-x;), (13)
: x, €[-2, 2], ,€[-2, 2]

wv

-Fig. 4 The Nonlinear System Output

The DSOFS has n=2, m=1 and rules of
the form:

if X is X" then y is y" with b", r=1..N (14)

where X = {x,, x,}, XER? yER; b'ER".

In the self-organizing step of the synthesis
we have used a neural network of inputs x,,
X and y, with Ny=40 neurons (fuzzy rules).
We have stopped the preliminary adaptation
process before the 1500-th iteration
(developing background step). Afterwards,
we have successively presented samples
from the pattern according to the neural
relocation algorithm proposed above.

The similarity measure that we have used
in our computer simulations was of the
following form:

d({xl' X2, )'}, {hln h2r9 hSr}) = az*(xl'
hy,)2+a2*(xy-h,, )2 +b2*(y-h,,)? (15)

where b>a, a,bER*,

The simulations resuits also showed that
the network have the tendency to add less
neurons while the process continues, as an
effect of increasing the basins of attraction
of the fuzzy rules up to the maximum basin
radius. In Fig.5 it is depicted an example of

the distribution of the rules in a sten of the

neural relocation self-organizing procedure.
Every rule r is represented by a circle with
the center (x,’, x,") and the radius b".

After the neuron relocation self-organizing

w.
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Fig.5 The Spatial Distribution of the Basins
of Attraction

Fig.6 The DSOFS Output after the Self-
Organizing Procedure

procedure we have obtained N=351 rules
{x';,, x%, Y} consisting in the network
weights {h,,, h,,, h3,},i=1..N. In Fig.6 it is
depicted the output of the fuzzy system after
5000 iteration of the self-organizing
procedure. We can note the well topological
resemblance to the model (including the
symmetries).

The truth degree of the rule r was
computed by:

W(X,X;) = Bi(X=X)*Ba(X-x)*Ba(d)  (16)

where g,, g,, g, are gaussian-like functions.
These vectors became a background for
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Fig.7 The DSOFS output after the LMS
Adaptation Procedure

the second step: LMS adaptation of the
output. In the LMS adaptation procedure we
redraw the output reference fuzzy sets y* in
order to obtain better resuits. In Fig.7 it is
depicted the output of the fuzzy system after
1000 iterations of the LMS procedure.

V1. Conclusions

The Dynamic Self-Organizing Fuzzy
Systems have some major advantages based
on rules adding/removing features and the
reference fuzzy sets adaptation: ([1]
automatic synthesis based on neuron
relocation self-organizing procedure and the
LMS adaptation; [2] the possibility of
paraile] implementation

The DSOFS background consists in a self-
organizing neural network with neuron
relocation features. The neural equivalent of
adding/removing rules is relocation of the
neurons. According to the proposed
clustering algorithm, neurons (fuzzy rules)
are relocated and the fuzzy reference sets
for both input and output are adapted in
order to develop feature map formation. One
could remark a higher adaptation speed and
the reduced numbers of nzurons in
comparison with Kohonen’s self-organizing
model.

These advantages impose them in the
problems involving modelling, automatic




fuzzy system synthesis and adaptation. They
can be both used in the developing stage of

other fuzzy systems and in self-sustained

applications.
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FUZZY LEARNING UNDER AND ABOUT AN UNFAMILIAR FUZZY TEACHER A

Belur V. Dassrathy - - -
Dynetics, Inc.

P. 0. Drawer B
Humssville, Al 35814-5050

ABSTRACT

This sudy addresses the problem of optimal parametric learning in unfamiliar fuzzy environments. Prior
sstudies in the domain of unfamiliar environments, which employed either crisp or fuzzy approaches to model the
mncestaimty or imperfectness of the leaming environment, assumed that the training sample kabels provided by the

=mizmilts: teacher were crisp, even if not perfect. Here, the more realistic problem of fuzzy leaming under an unfa-.

mmiliar wacher who provides only fuzzy (instead of crisp) labels, is tackled by expanding the previously defined fuzzy
mmembership concepts to include an additional component representative of the fuzziness of the teacher. The previ-
amsly sedied scenarios, namely, crisp and fuzzy leaming under (crisp) u..familiar teacher, can be looked upon as spe-
«ial cases of this new methodology. As under the earlier stud:zs, the estimated membership functions can then be de-
ployes daring the ensuing ~lassification decision phase to judiciously take into account the imperfectness of the
[lcarmizg cavironment. The study also offers some insight into the properties of several of these fuzzy memberskip
finnction estimators by e~ anining their behavior ader certain specific scenarios.

1. INTRODUCTION

Probabilistic decision making in imperfectly supervised environments, i.e., scenarios wherein the labels of
tthe givem training samples are unreliable, has been extensively studied in the literature over the past two decades {1-
77). Typical of the leaming models proposed are: probabilistic teacher [1), imperfect teacher [2, 3}, unfamiliar teacher
(%) and VEDIC teacher [5]. A couple of fuzzy models [6, 7] have also been proposed recently. The probabilisiic
reacher approach proposed by Agrawala [1], which represented a start of a whole new line of studies, essentially disre-
geards e given unreliable labels, i.c., treats the imperfect environment as unsupervised and uses a probabiiistic label-
img scheme to learn the underlying parameters for the design of the classifier. On the other hand, the imperfect
teeacher model proposed by hanmugem [3] assumes that a precise knowledge of the level of imperfection (B) in the
enwircament is available a priori and uses this information 1o guide the parameter leaming. This improves the qual-
ity of leaming over the probabilistic modei only as long as the underlying assumption is valid, i.c., the level of im-
erfecsion assumed is close to the reality. Otherwise, the resultant learning under the imperfect teacher is likely to
dac wosse than under the probabilistic teacher, which, in essence, assumes B = 0.5 for a two-class problem, or in a
mmore gemeral case, B = 1/m, where m is the number of known pattem classes in wie environment.

The unfamiliar teacher scheme reported by Dasarathy and Lakshminarasimhan [4] avoids both of these com-
pilemenexy problems, of either having to disregard the imperfect labels entirely and lose some useful information or
mmaking 2 possibly wrong assumption on the imy; >rfectness level and thereby biasing the learning process. This is
accomplished by viewing the enviroument initially as unknown (i.c., starts the leaming process in much the same
nuanacr 25 the probabilistic teacher scheme, with B as 1/m) and then learning B about the environment simultane-
omisly wch the leamning of the parameters for the classifier system design. This learning about the teacher has been
stieown maid and enhancc the leaming under the teacner (see Figure 2 of reference [4]). This approach was extended
tow Dasarcathy and Lakshminarasimhan [5] to dynamsic scenarios using the VEDIC teacher model, wherein the level of
immperioction B, in addition to being unknown, is also changing with time,

Recently, fuzzy models [6, 7] were proposed to effectively capture the uncertainties caused by the impesfect-
mess of these crisp teachers. Underlying these fuzzy techniques is the need to define a fuzzy membership matrix for
it givea raining data set. Various approaches have been proposed for leaming these membership functions. The
ciiiectine of the study being reported here is to adaps this novel concept of fuzzy leaming under an unfamiliar teacher
xpthe problem of leamning in an environment that is not only unfamiliar, i.e. labeling information is of unknown
lieeed of seliability, but also fuzzy, i.e., the given trzining samples are associated with meltiple classes (rather than
jnest one) with membership distributed across the pattern classes. The fuzzy membership functions 10 be learnt dur-
img the waining phase reflect not only the inherent imperfectness but also the fuzziness in the class association pro-
virgied by de unfamiliar fuzzy teacher. These fuzzy memberships can then be used in the clssification phase to ap-
peapiascly bias the decision process. Details of this integration of the concepts of fuzzy leaming under an unfamil-
mrcrisp wacher with those of a fuzzy teacher are presented in the sequel. Section 2 briefly reviews the basic crisp
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leaming under an unfamiliar crisp teacher. Section 3 provides a short overview of fuzzy leaming under an unfamiliar
but still crisp teacher. In section 4, the adapiation and extension of these ideas to the scenario of fuzzy leaming un-

 der an unfamiliar fuzzy teacher is presented. The associated.algorithmic procedure is outlined in section S to aid the
implementation of the new methodology. Sectun 6 outlines some potential alternatives to the initially proposed
fuzzy membership model. The last section offers some concluding comments.

2. CRISP LEARNING UNDER AN UNFAMILIAR CRISP TEACHER

The intuitively appealing concept, of learning about an unfamiliar teacher as an aid to leaming under the
teacher, that underlies this study, was first proposed and successfully demonstrated by Dasarathy and
Lakshminarasimhan (4] 1n 1976 in a two-class crisp environment. They showed that this leaming under an unfamil-
iar teacher is indeed an efficient and practical t»l for learning in imperfectly supervised environments wherein it is
vnrealistic to assume the. the level of imperfectness is known a priori , the basis of earlier studies in this area. This

dual learning process, of learning about the teacher concurrently with parametric learning under the teacher, is

schematically illustrated in Figure 1.
. Label Probability Distribution Parameters: A
given crisp ‘
labels B
‘ Labels Updating Teacher
— com oo e —

Figure 1. Crisp Leamning in Unfamiliar Crisp Teacher Environments

Here the learning about the teacher consists in learning B, the effective level of imperfectness in the labels
provided by the teacher (environment). This is modeled as a Bemoulli trial with parameter B and a Bayes estimator
for minimum quadratic loss, which has a beta distribution {8], is set up for the estimation of f. The learning under
the teacher consists in learning the parameters of the underlying distributions which is essential for classification in
the operational phase, the primary objective of the effort. It is 10 be noted that this lcarning scheme [4) in essence
encompasses the spectrum of learning scenarios, starting from learning with a perfect teacher (8 = 1) up to leaming
withont a teacher or learning with a probabilistic teacher (B = 1/m) through leaming with a known imperfect teacher
(ie.. B, I/m < B < 1 is known a priori) and ultimately learning under the most realistic of these scenarios namely
learning with an unfamiliar teacher, i.e., B, (1/m < B < 1) is unknown a priori and is learnt simultancously with
parametric leamning. Further implementation details of this leamning process can be gleaned from [4) and, as such, are
not presented here to save on publication space.

3.. FUZZY LEARNING UNDER AN UNFAMILIAR CRISP TEACHER

The unfamiliar teacher scheme discussed in the previous section was synergistically combined recently (6]
with the now-well-understood concepts of fuzzy membership to derive a potentially powerful tool of fuzzy leaming
in unfamiliar teacher environment. This integrated leaming is schematically illustrated in Figure 2. Here, the leam.-
ing includes, not only the distribution parameters and the imperfectness level (as outlined in the previous section),
but also the fuzzy membership values generawed for each of the input samples by the fuzzy modeling of the uncer-
tainties in the leaming environment. This synergism permits the user 1o exploit the benefits of both the unfamiliar
teacher hypothesis as well as those of fuzzy learning conczpts. The algorithmic and other details of this integrated
scheme of learning, as well as the associated fuzzy membership models, their altermatives and propertics, being read-
ily available in the study published recently [6), are not repeated here in the interest of conservation of publication
space.
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Input data and

Generation

given crisp
labels

" Probability Distribution P 1
‘ > Labels > Updating Teacher B ;
Comparator Characteristics

Figure 2. Fuzzy Learning in Unfamiliar Crisp Teacher Environments

4. FULZY LEARNING UNDER A UNFAMILIAR FUZZY TEACHER

The scheme of fuzzy leaming under an unfamiliar teacher, outlined in the previous section, assumed that the
labels provided by this unfamiliar tcacher, were crisp, even if imperfect. However, in real-world eavironment, the
imperfect teacher is likely to be fuzzy also. The previously reported fuzzy model [6], which was postulated w take
into account only the impesfectness of the teacher, had no provision for taking into consideration the fuzziness in the
teacher behavior. Accordingly, a more generalized fuzzy membership model, viewed as the sum of two weighted
components is proposed here. This new learning process is schematically shown in Figure 3.

. Distribution Parameters: A
> l.abe! » Probabflny >
Input data and Generation Updating
given fuzzy
labeling * B
> Labels » Updating Teacher .
Comparator Characteristics
Updating Fuzzy {*® u
Membership Values

Figure 3. Fuzzy Leaming in Unfamiliar Fuzzy Teacher Environments

The new fuzzy membership function, in effect, capiures both the imperfectness and fuzziness of the unfa-
miliar teacher environment during the learning phase. This is then used to correspondingly weight the decisions
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made in the classification phase. This is the ceatral idea of the methodology presented here in this study. The recur-
sive leaming process necessary for accomplishing this objective can be viewed as one of upgrading the fuzzy mem-
bership values fumished by the teacher for each training sample, simultaneously with the leaming of the underlying
distribution parameters and the level of imperfectness of the supervision availabie in the environment.

The input to this recursive triple learning process consists of ;

* asetof training samples or feature vectors (x;:i=1,...n)
. asctofcouespondingfuzzylabelmemberslﬁps{{vij:i=1....n};j=1.....m]

These labels memberships are assumed to have a level of reliability B which is unknown at the start of the
learning process and is learnt during the leaming process simultaneously with the parameters of the underlying dis-
tributions. This learning begins with an assumption of B = 1/m, i.e., the labels are essentially disregarded. Thus,
initially each sample would have membership values in all the given classes in proportion to the a priori probabii-

ties of these classes in the environment since we do not as yet have any measure of confidence in-the-unfamiliar -

teacher fumnished fuzzy labeling information. Under equal a priori probabilities of the classes, the membership func-
tion values for each sample will be 1/m provided, of course, the environment is completely exposed, i.c., all the
classes expected in the environment are represented in the training set. Otherwise, one will have to adapt into this
scenario additional concepts such as leaming in partially exposed environments [9] that have been developed for deal-
ing with cases wherein all the classes are not representatively known at the start of the leaming process. This would
involve adding the flexibility of a reject option to the classification phase and hence a method of defining or learning
the boundaries of the currently known classes relative to the rest of the world in addition to leaming the boundaries
between the known classes. While this is conceivable in the light of the reported developments [9), it is not consid-
ered here as being outside the scope of the cusrent study.

As the recursive learming progresses, each sample is assigned probabilities of belonging to the different
classes by the unfamiliar teacher scheme (in a manner similar to equation (4) of reference [4] but modified to take
into account multiple classes and the current fuzzy membership function values to correspondingly weight the differ-
ent @ priori probabilities). Then, one can update class fuzzy membership values based on not only the teacher fur-
nished fuzzy membership values, but also on the relative proportionalities of the a posteriori probabilities and Bthe
imperfectness of the unfamiliar teacher. Let Pij be the a posteriori probability of x; being assigned 10 class jcom-
puted on the basis of not only the feature vector values but also the current fuzzy membership functions and teacher
imperfectness measure. Then the updated membership function value ujj, of x; being in class j, is given in terms of
the two weighted components as shown in expression (1);

uy = (ngij+(1-oc)wij (l)
where
ﬁp )
] =5 j=L
a-p L
D 2y P
i #L,
wii=f(ﬂ,m,pij,)=_l,...,m)= ap i @
@D j=i.m
izl
(1-B) €
D X,
#L
3n

L T R T R TR TG



He:e,meﬁrstcomponent.vijisuwonefumislwdbymfuzzyleachu. The second component, wij, is de-
termined by the leamning system (inammmshﬂameptoposedh\dwptwiousswdy)wmmfwuwim-

perfectness aspect of the unfamiliar teacher and a is the relative wcighting of the two componeats. When a = 0, .

this effectively corresponds to the scenario studied previously in (6] with the unfamiliar tcacher providing crisp la-
bels. At the other end of the spectrum, i.c. @ = l.wconlyhavemefuzzimdeﬁwdbymewhetwhhmmw
take inte account the imperfectness of the teacher within the fuzzy membership model (crisp lcaming under a fuzzy
teacher ! - a not very convincing model of leaming). A conceptually elegant choice for a is given by the equation
(©)8

_(mpB-1)

T (m-1) &)

Here, as B => 1, i.e. as the teacher progressively becomes more and more reliable, the imperfectness in'the labeling -~ =

reduces, @ => 1, more reliance is placed on the teacher provided fuzzy label information (vj) and less on the recur-
sively determined component (wjj)- On the other hand, as B => 1/m, i.e. the teacher becomes less reliable and tends
towards the unsupervised scenario, & => 0, the fuzzy membership information provided by the teacher becomes less
relevant and more weight is given 10 thc component determined by the actual a posteriori probabilities.

Equation (1) can be rewritien using equation 3)as

_mp-y  md-B) @

i~ (m-1) ¥ (m-1) Y

Here, we have

2 pij=1 &)}

i=1

Substituting equation (5) in the expression (2) we can rewrite (2) as

(m-l)Bpij . j=L,
o omr@snp] T ©
v (1-B) py Cj=1,...,m

[(-m+@B-Dpy) ~ i*L

For the special case of m = 2, which corresponds to the classical detection or binary decision problem, ex-

pression (6) reduces to
, | Bpll'l ;j=Li
[-B+@B-Dpy,]
W:: = 1 (7)
§ )
' i

[a-m+@B-Dpy,]

Here, it is interesting to note that in equation (6), wij: j =L, is symmetrically dependent on § and Pijii=
L;. As the supervision improves, i.e., as } increases towards unity, the fuzziness due to imperfectness reduces (the
membership function component wjj approaches unity for the class corresponding to the given label), but its relative
weightage in equation (4) reduces. When the a posteriori probability increases (for a given imperfectness level of the
supervision), the component wjj : j = Lj, once again approaches unity, and thereby contributes 10 a corresponding
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increase in uj; : j = Lj also, since B is not decreasing. Thus, although this second component (wj; : j = L;) is sym-
metric with respect to the imperfectness level and a posteriori probability, the total fuzzy memhasznipﬁmion(uij:
j=Lj) is not symmetric. B

At the oihcr end of the spectrum, when B = 1/m, i.c., with essentially no supervision, expression @) re-
duces to: .

uij=wij=pij ;Vj=l,...m (8)

Thus, under the unsupervised scenario, the fuzzy membership values are dictated wholly by the relative a posteriori
probabilities of the sample belonging to different classes computed on the basis of the estimated values of the distri-
bution parameters. For all other values of B in the range (1/m) < B < 1.0, the fuzzy membership value is a function

of both the relative a posieriori probabilities as well as the reliability level of the labels provided by the teacher as - -

given by equations (4) and (6). Since pjj and B can be computed during the sequential learning scheme based on the
unfamiliar teacher concepts (using appropriately modified forms of equations (4) and (5) in Reference (4]), we can
continually update wij and hence ujj also. This construct also assures consistency with the definition of these func-
tions, i.¢., the sum of membership function values for every sample is equal to unity. For cases wherein the a pos-
teriori probabilities pjj are all equal for a given sample xi, (i.c., Pij=1mforallj=1,...,m)expression (6) re-
duces to:

B s =L
T ap ®
-1 SRS
) We can also derive the case for which the second component of all the membership functions become equal,
ie., A
Wij=WiVj=l,...,m ' : ‘ (10)
as
(m-1)Bp;.
=— i . gy an

=

Here, it is interesting to note that equation (11) reduces to the previously discussed case of equal a posteriori proba-
bilities for all classes when B = 1/m.

In view of fact that the sum of the a posteriori probabilities of all classes is unity (equation (5)), equation
(11) in effect defines a specific value for the a posteriori probctility as:

po = (=B
Li “[1+m(m-2)f]

Correspondingly, equation (11) becomes

=, (m-1)B ’
Pij [1+m(m-2)B] 43

(12)

Equation (12) reduces o 1/m for B = 1/m and (1- B) for m = 2 the two special cases previously considered here,
Comrespondingly, equation (13) reduces to 1/m for § = 1/m and Bform=2
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mwwuﬁmhwmfmm(m&rﬂwmfmﬂwmm)mm ; ‘
. k-theparamele:softhenndu‘lyingdistﬁbuﬁauofd\cdiffmtpumncminmeenvimm :
+ P - the level of imperfectness of the unfamiliar fuzzy teacher in the environment A
« U - the set of membership function values for all the training samples over all the different classes Y
5. ALGORITHMIC PROCEDURE
@) SetB=Boatanappropriawlevel(llmSBsl)-theschemeisnotverysmsitivctoﬁﬁsmitiﬂ '
value and as such the choice is not critical P
(i)  Aseach new sample X is input, generate a probabilisticaily assigned label ¢; based on the parameter |
estimates as known using the fuzzy membership function values to appropriately weight the corre- L
sponding classes (by modifying the multiclass version of equation (4) of reference {4])
(iii)  Update the parameters A (using equation (3) of reference L))
(iv)  If the teacher furnished label L; and the generated label ¢; match, set Y; = 1 denoting a success - .
event; else set Yi=0 .
(v)  Update  (using equation (5) of reference (4]) b
(vi)  Update wjj using equation (6) 3
(vii) Update ujj using equation (4)
(viii) Go back to step (ii) for the next sample

(ix)  Repeat the procedure till are the samples have been processed
6. SCOPE FOR EXTENSIONS

In the analysis hitherto, it was assumed that the imperfectness P of the unfamiliar teacher is constant across
the different pattern classes. However, in the real-world environment, this may not always be true since information

acquired about some of the pattern classes may be less reliable than that available for other classes. For example, in J
the field of non-cooperative iarget recognition, it is quite likely that the labels of samples acquired of friendly targets 1

may be more reliable than those of adversaries. These differences in the environment have to be appropriately taken
into account by the leaming process for the learning to be truly optimal. Accordingly, the recursive leaming process
will have to he suitably modified to accommodate different B values for the different classes. Here, these multiple
B’s are assumed to be statistically independent for the limited purpose of the ensuing discussions. However, appro-
priate models which accommodate statistical dependence between these B’s can also be visualized, if so desired.
Under this class dependent B scenario, multiple estimators (similar to the equation (5) in reference [4]) will have to
be set up, one for each of the pattem classes expected in the environment, Correspondingly, expression (2), em-
ployed here for estimating the fuzzy membership functions, will also have to be modified to permit multiple B val-
ues. This is accomplished by employing an estimator illustrated by the following expression:

BLi pij

y =l

(1-8L)
B Pir, + ——'—'L'(m ) k§= ) Pik
i +L. 7
wy =f(Bj, m, pjj )= 1,...,m)= 1-pu) i 14

m-1) Ti j=1,....,m

a74
|



o
I
However, in order (a ensure that the summation across the classes of the membership function vy; equals unity in “
general for each sample, the weights of the two components in equation (1) have 1 be constant and independent of i
the class. Hence, equation (3), as defined earlier, can not be validly employed whenever B is not constant across the
pattern classes. Accordingly, equation (3) is modified to be: 2
— L '~o’
m 4
Q. B;-D -~ |
o= j=1 - (m<f>-1) a5 .
(m-1) (m-1)
where <B> is the average value of § across the classes. .
Using equation (5), expression (14) can again be restructured as !
: (m - DBL; p;; el ._k-
[(1-BL) + (mBr;- D by, |
, - PL; ) Pjj Li=L...,m
[ +mby- D pyg,] T ieL
As before, for the case m = 2, i.¢., a binary decision case with different levels of reliability for the labels of L
the 1arget samples from the two classes (for example lethal and benign), we have 1
BL. D:: .
L; P - y
[1-BL) + @By, - vy, ] !
i = (- 81,) .
“PLi ) By o
; Y ]¢Li
[(-BL) + @8y, - Dy, |
Expression (9), which represents the case of equal a posteriori probabilities pij, will also get modified corre-
mingly. whenever the imperfzctness levels for the different classes are estimated scparately. Expression (14) re-
to:
Br, B B ™
(1- B!.) L
@-n 17
Again, for the second component of all the different class memberships of a given sample 10 be equal, (equation (10)) -
can be derived from expression (14) as
@-DPLPy, . =1,....m -
P;= = i ! ; Byl 19;
(1-Byy) L,
which as before is again subject (o the constraint equation (5). Hence, from equations (5) and (19), we get
1-BL,
L-P)  _pyet 20) —

piLig[m(m-Z)BLﬁl] i
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For the binary decision case, i.e., m = 2, this reduces to
piL, = (1-BLyds
pij"’BI‘.i. sl

The corresponding steps of the algorithmic proceduse outlined in section 5 should be appropriasely modified to reflect
this variable nature of § across the classes, assuming the f’s to be statistically independent.

- 21

In expression (14), the fuzzy membership component wij is a function of only the imperfectness of the
class represented by the given label, i.c., it is independent of the quality of supervision available for classes other
than to which the sample is assigned by the teacher. A more realistic, but complex, mode} would be of the form:

PL; P

y i=L

1- BL.

31.iPiL.+"nl'(‘-ﬂ‘él an (1-Bx)py
' (m-1)" k=1
#L;

ij - 1- BL.
r_n__(___ﬂl'le(l-ﬂj)pij
(m-1) j=l,...,m

22)

1- By,
2R R (1Bopy
(m-1)" k=1

#Ll

BL; Py, +

i

It is interesting to note that in expression (22), wjj becomes a function of the imperfectness levels of all the
different classes in the environment while retaining the uniqueness of the original expression (14) for the perfectly
supervised class case of B1.j = 1. (However, unlike equations (2) and (14), equation (22) cannot be restructured to
eliminate the summation over pjk because of the presence of the variable Bk within the summation term).
Expression (22) can therefore be viewed as a more realistic portrayal of the imperfectness in the environment for the
classification phase. Under this mode!, a crisp (i.e. 1 or 0 value) scenario gets established for wj; whenever just the
single corresponding imperfectness parameter disappears (Bj = 1). This therefore represerts an .OR. logic based de-
pendence across the imperfectness values. One can also visualize an .AND. logic based version of the model as:

PL; By . j=L.
’ 1
ﬁl"ip“-i 2(n l)k.z___.l (2- Py B pi
Wy = - , @3)
(2-BuB)
2(m-1) i Cj=l,....m
=L
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7. CONCLUDING COMMENTS

The study offers a potent tool for learning and operating in imperfecily supesvised fuzzy environments.
This is accomplished by treating the fuzzy eavironment as essentially unfamiliar at the initiation of the learning pro-
cess and thereafter leamning about the environment in terms of the level of imperfectness and the fuzzy membership
values for each training sample concurrently with the primary leaming task of determining the underlying distsibu-
tion parameters. The major innovation of this study is the development of an unique concept of jointly capturing
within the defined fuzzy framework both the imperfectness of the unfamiliar icacher as well as the fuzziness in the la-
beling provided. Admittedly, alternative fuzzy model formulations (such as for example equation (24)), can easily be
conceived. '

m
IT B Pj;
= k=1 > 5 =L

m

kl;llﬁk p“‘i+5—(-ﬁl}77kgl (2-By;-Bx) Py

B #L

v (2-BL; B))

I(m-1) Pi Cj=1,....m

[~ k4

24

m
I wo gy £ @ohubom

! L

The approach can also be extended to dynamic environments by combining the VEDIC teacher concepts [5,7] with
the dual-component based membership function learning methodology developed here,
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Abstract

In this paper some problems in the design of management systems for complex objects are discussed. Considering the
absence of adequate models and the fact that human expertise in the management of non-stationary objects becomes
obsolete quickly, the use of self-learning together with a two-step optimization of on-line control rules is suggested.
To prepare for the object analysis, a set of definitions has been proposed. Traditional and fuzzy sets (1, 2] approaches
are used in the analysis. To decrease the reaction time of the control system, we propose the development of control
rules without feedback.

Keywords: Control Processes, Decision Theory, Fuzzy Sets, Optimization

1 Introduction

Automatic and semi-automatic control and management systems usually are based on sets of control rules. The devel-
opment of such rules requires either comprehensive human expertise or an adequate object model or both. However,

the design of reliable models of complex objects is often a very difficult task and human expertise in the control of the
non-stationary objects becomes obsolete with time. The traditional use of a control with feedback results in prolonged
reaction time. These problems can be partially avoided if a seif-lcaming approach is used for the development of con-
ol rules. In this paper, which is but another drop in the sea of control and management literature, we too are propos-
ing and studying some variant of such an approach.

The methodology for synthesizing management systems depends on the complexity of the controlied object. In this
paper we will discuss the management of complex controlled objects with multiple inputs and outputs. (Queueing
networks and assembly plants are examples of such objects.) The object transformation function (mapping) is defined
by an object organization (structure) and by the values of the object element set-: - - parameters (values of control vari-
ables). Object performance is evaluated by multiple criteria (via multiple controtied variables). Management system
performance is evaluated by the management system’s ability to maintain outputs at the predefined level (the simple
control task) and by its ability to minimize the “cost” required for the control (the optimized control task). Modem
managemext systems are based on relatively powerful computers and execute their tasks by varying either control
variables and/or object strocture. In the development of management systems, one should consider that management
system reaction time must be much shorter than input drift, and processes of environmental and structural changes.

The ability of management systems to control and optimize objects depends on the efficiency of the algorithms used
for these purposes. In wm, these algorithms depend on continuity, separability, and monotonicity of controlled object
mapping functions. In general, the behavior of mapping functions depends on the nature of controlled objects. If, for
example, simple physical devices ofien have mapping functions that are continuous, separable, and monotonic, this is
not always the case for more complex controlled objects. When mapping functions are continuous, scparable, and
monotonic, relatively simple control and optimization algorithms can be applied. However, when mapping functions
are not continuous, separable, and monotonic, then significantly more powerful algorithms are needed. Because the
behavior of mapping functions i imposes limitations on the selection of control and optimization algorithms, and since
proposed self-learning methodology is based on such algorithms, let’s define what we mean by continuity, separabil-
ity, and monotonicity. Let’s also define several other terms used in this paper.

2 Definitions
From a management point-of-view, an object can be defined via the following mapping functions:

F(VVH: XY, F(X,H):V>Yand F(X,H):V->Q )
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where:

X = (x} %% ....x™) isan input vector m = |M, M isa set of input variables;

Y = (y'y% ...,y") isanoutput vector n = INl,N is a set of output variables;

V = (v',v?...,v”) isa vector of control variables, p = |P1, P is a set of control variables; )
0 = (¢" ¢% ... q") isa vector of controlled variables, b = 1B1,B is a set of coatrolled variables; i
H = {h;} isacontrolied object structure, & is an object element, e L .

We can define some properties of these functions, which are useful for management system development:

a. Let's consider a function F(V,H): (X+4) = (Y+W) with any fixed V and H as continuous into space C if
when A —0,then p—0 for vXe C, (X+N) e C. @

b. Let’s consider a function F.(X, H) : (V+1) » (Y+1) with any fixed X and H as continuous into space A if
when 1 — 0, then p— 0 for VVe 4, (V+1n) € A. - 3)

¢c. Let’s consider a function F (X, H) : (V+n) — (@ +p) with any fixed X and H as continuous into space L if
when 1 - 0, then p—» 0 for YVeL, (V+m) e L. @)

d. Let’s consider a function F(V, H) : X - with any fixed v and H, and X e C as monotone if when X is
changing in one direction along same monotone trajectory into C, then Y is also changing in one direction
along a monotonic trajectory into output space. 5)

e. Let's consider a function F (X, H) : V —Y with any fixed X and H and V € A as monoione if when V is chang-
ing in one direction along same monotone trajectory into A, then Y is also changing in one direction along 2
monotonic trajectory into output space. (6)

f  Let’s consider a function F(X,H) : V—Q withany fixed X and H and V e L as monotone if whea V is
changing in one direction along same monotone trajectory into L, then @ is also changing in onc direction
along monotone trajectory into controlled variable space. )

g Let’s consider a function F(V, H): X - as separable if F: (2 4 A0 2™ o (P4 and
Foixh, 22, s 4 &, X — (Y+) then F: (2,2, XA PN, ) o (YK 4R (8)

h. Let's consider a functioa F (X, H) :V — Y as separable if F: (', V. VAL V) o (Y +F) and

Fi (W' V4 80, ., VP) = (Y+¥) then F: Vo VBV, V) o (Y er) (D)

i Let’s consider a function F (X,H) :V —Q as - ‘parable if F: (2 VAL, V) (Q+0) and
Fi (v, eV 4, . ¥P) = (Q+ @) then Fi(v' V. v + 4, VA, V) o (Q+9+0)  (10)

We can define the fluctuation range of i, (i € M) input variable by an ordered A set that consists of real numbers s*
representing possible measured values of this variable. The whole input space is:

A=A xA%x .. xA" a1

We can define the reference (desired) value y for every outpui variable i, (; € N) and the reference output vector
Y, = (3 y% ..y} for the whole object.

We also can define the permissible output space:
o= b +alyl-allxhZ+a?yl-a?lx.. xly +aty]-a’l (12)

where o is an accuracy of tracking i variable; [y’ + oy, - o] is a pemmissible interval of i output variable.
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Each permissible interval also can be represented by a normalized fuzzy set U* with a membership function
b,().ye suppU'. In this set, y; = y; has a maximal possible grade b,,.'(?:) = 1. In this case, the permissible output
space © can be defined as: o . —

6 = suppU' ><suppU2 X ... X suppU* w 13)
The actual output vector ¥, at moment ¢ usually differs from ¥,. This difference is the result of either X, drift or map-
ping function changes caused by V instability and environmental and H changes. Deviation of ¥, from Y, isa control
ervor for which the management system must compensate. Compensation can be done either by varying only V or
only H or by simultaneous changes V and H.

The quality of control is evaluated either by an output error vector that at moment ¢ is:

R, = (s,‘,ef,....e:‘),where £i= yf-—yi, (ieN). (14)
orby3 = Y (l-b'/-(y‘;)) that can be used for estimating a degree that 7, € ©. 15)
ieN

We will consider that the controlled object is working within a required accuracy if either of the following conditions
are satisfied: S ) '
for Vi, (ie N) (¥ +a) <yi> (3}- ') or ;e supplU’ (16)

or Y,ed orY,e© an

All X, for which conditions (16, 17) are satisfied for some combination of VH , are permissible input vectors for this
combination. We can propose two definitions of permissible input subspaces =* for z-th combination of VH:

Z*=( X]X - Y € dorY € O for z-th combination of VH )

or == [xll:ax_ x:l:in] X [xil’at - x::iu] X,...,X[x::x - x::n ‘ A (18)

where ¥~ xi%,_is a permissible input interval of i input variable which provides conditions (16, 17) for z-th
combination;
Xt xi% are correspondingly maximal and minimal permissible values of i input variable.

We also can define each permissible i input interval as a normalized fuzzy set W** with a membership function
b (x),x€ suppW** . Corresponding permissible input space ¥* is:
W' = suppW'® x suppW x ... x suppW™ %)
We can define for each output variable i at any time ¢ a distance of y} from the border of a permissible output interval
either via:
8 = min (fyl+ o~ ¥yt + o’ - y) or via membership grades as 1 - b; oh - (20)

For the output vector we can use either:

D,= fz (8% or (15). Q@n
ieN.

The efficiency with which the management system executes its controlling functions can be different for different
combinations of V and H. We can introduce a multivalued goal function G that can be used for evaluating the effi-
ciency of the management system and optimizing the object:

G= 3. 14, | )

feB
where ¥ is a weight coefficient of f conirolied variable, fe B.
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3 Management
Management sysiems should be able to work in two interrelated modes:

1. Simple control mode. This is either a process of Mminimizing an output error vector:

min X, = (g},€},....}) ormin § = ¥ ( -b,00) 3)
V.H V.H ieN

or a process of confining Y, to permissible output error space (12, 13), which is executed by varying either
only V or V together with H. For successful control, conditions (2) and (3) must be satisfied. Controlling algo-
rithms can te relatively simple if conditions (5, 6, 8, 9) are also satisfied.

2. Optimized control mode. This is also a process of the object control corresponding with (24). However, here
the object performance is optimized by varying eisner only V,or Vand H: ‘

max G= Y +/¢ upon satisfaction (16, 17). 24)

V.H feB
Relatively simple algorithms can be used for this optimization if conditions (4,7, and 10) are satisfied. If conditions
(5-10) are not satisfied, then the algorithm proposed in (3] can be recommended. The optimization (23, 24) that is
executed by varying V is based, in general, on non-linear programming. During such an optimization, conditions (16,
17) can be preserved relatively easily. However, the optimizasion that is exec:ted via contiolled object structural
changes is based on the combinatcrial approach. During combinatorial optimization, conditions (16, 17) can be unex-
pectedly violated, since any changes of ¥ create a significant destabilization effect on the object. To decrease the pos-
sibility of violations of (16, 17), the management system shouid, before changes of H are made, try to drive Y, into
the center of ® (©). This can be done, for example, via thorough V optimization. The occumrence of Y, near the cen-
ter of ® () is an indication that the object has an excess of stability. As a result, the optimizatioa executed via
changes of H becomes possible.

3.1 Models

Different management system medes require the use of different models, Namely, the simple control mode requires
the input-control variables-object Structure-output mapping model. This model reflects F(V, H) : X —» ¥ (Figure 1a)
and F (X, H): V> Y (Figurelb). For the optimized control mode, a control variables-controlled vaniables-mapping
model that reflects F* (X, H) : V — Q (Figure 1c) should also be used. Both modclsarecmtedmdtpdﬂedMgme

self-leamning process.
Lty

X K ¢ X
Pt eeeaannne W ] e S . L o
a b c :
Figure 1
3.2 Control Approaches

For object stabilization, two approaches based either on VH, =f(Y) or VH, = f(X)) can be used. The first
approach uses a feedback scheme, i.e., the management system constantly monitors conditions (16, 17) and corrects
output, if necessary, by varying V nd H. This approach is relatively accurate. However, it is slow, since control deci-
sions are delayed by az: object X — Y ransformation time and by a decision process that requires CPU time. The sec-
ond VH = f(X,) approach does not use a feedback scheme all the time, Instead, the management sysiem
continuously monitors condition X, € Z* (X, € ¥*) and makes decisions, either that the VH/ combination has io be
changed and thus what has to be done to satisfy (16, 17), or that no change has 0 be made. In other words, the second
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approach uses rules of this kind: “If X, € Z* (X, e '¥%), then do nothing. If X, € =* (X, € ¥*), then find other =" (¥")
1o which X, belongs and change the object in correspondence with V"H’". This approach is faster than the feedback

approach, but requires that VH = f(X) (reactions) for VX will be prepared in advance. To decrease reaction time, we
will study the possibility of using a second (without feedback) controlling approach in combination with seif-learning
and adaptation.

4 Self-Learning and Adaptation

The purpose of self-learning is the development (modification) of control rules base:d on cause-and-effect information
received via trials. In the absence of analytical models, it is recommended that trials be made on the real objects.
Self-learning consists of three phases. Namely:

1. The preliminary cause-and-effect trials phase. This phase is dedicated to the analysis of how linear F(V,H,:
X—Y, F(X.H): V=Y,and F' (X,H): V- Q are, and where conditions (2-7) are satisfied. Conditions (8-10)
must also be studied.

For the study of F(V, H) X" Y and for the fixed V and H, we will either observe natural X fluctuations on the real
object, or actively change X on the model or on the real object. For each X, a value of Y is defined. This process is
repeated for different V and H. Similarly, for the study of F(X,H) : V-Y,and for the fixed X (if it is possible)
and H, we will vary V and define for each V a value of Y. This process is repeated for different X and H. The pur-
pose of this is to check (2,3, 5,6, 8,9).

For the study of F' (X, H) : V —» @, and for the fixed X (if it is possible) and H, we will vary V and define for each
v value of Q. This process is repeated for different X and 4. The purpose of this is to check (4, 7, 10).

The number of such trials is dictated by the desired accuracy of verification of (2 -10) and it must be held to the
minimum. The results of the first phase are needed for the selection of optimization algorithms.

2. The development of the control rules phase. This is implemented via a two-step object optimization. During the
first step, an VH combination (feasible solution) is received for the analyzed X in comrespondence with (24) (Figure
2). The second step is the selection of the optimal (in correspondence with (25)) VH combination for the same X.
(The use of optimization for developing rules allows us to restrict the number of analyzed VH combinations only to
the combinations used during optimization. As a result, the analysis of all possible combinations of VH, required
for the full-scale object analysis, can be avoided.)

V,H

X
—

Figure 2
Control rule development starts from some X . When the optimal VH combination is received for this X, then a per-
missible input space 2* or ‘¥* for this combination is defined on the basis of (18) or (19) by varying either model or
real object inputs (Figure 3). ’

.......................

.......................

VZ,HZ joooee. g

......................

Figure 3
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Consequently, we will formulate a rule: “If X € Z* (X e ¥¥) , then H*V* combination has to be chosen.” Then the
two-stage optimization process is repeated for some other X € E* (X ¢ ¥*) . As aresult, we will find other V'H"
combinations and other input subspaces Z7 or ¥’ (Figure 4).

.......................

V‘,H’ - s

......................

Figure 4
After this, the next X (neither X ¢ =% (Xe W) nor Xe =7 (Xe ¥))is selected and the process is repeated. Input
vectors are selected for the analysis until either the whole input space A becomes decomposed or a feasible solution
for the same X is impossible to find. As a result of decomposition, some input subspaces can intersect; i.e., more
than one feasible solution exists for some X;i.e., Xe ¥, ¥, =N \P;;e@or Xe g, g = nzs;;z , where E'
or ¥, representa g-th intersection. el e

If X, ¢ =*, and X, € Z,and if conditions (3) and (6), or (9) are satisfied, then a combined weighted rule [4]canbe
executed to provide Y,€ © . '

When the controlled object is non-linear, it is possible that |7 # [] (%] » |¥"]). We should ry to avoid intersec-
tion situations because the more input space that belongs to the intersections, the more VH combinations have to be
analyzed. If Z* ('¥*) represents an object stability input space for the z-th combination of VH,thenz = 2?
(¥= Y, ¥*) represents a total object stability input space. 16z

3€

When £ = 4 (¥ = A), then the object is stable. If Sc A (Ve A)), then the object is only partially stable. Results
consisting of optimal input subspace-object structure-control variable vector rules should be stored in the input-
reaction table. S .

3.The adapration phase. Because an object and/or object environment vsually are non-stationary, the management
system’s ability to control and its performance efficiency degrade with time. To maintain the controlled object per-
formance at the predefined level, the management system should constantly monitor the validity of the developed
rules and the values of G,. The purpose of monitoring is to detect a moment when management becomes incffi-
cient. When management system inefficiency is detected, another self-learning process is necessary.

Depending on the peculiarities of controlled objects, we will use different approaches in the seif-learning.

Some controlled objects or their models can be studied in the test-bed mode. In this mode X, is stabilized as X and
preciscly measured. Other vectors (Y, V, Q) can be precisely measured also, The test-bed mode pemits implementa-
tion of a special algorithm during the first and second phases of self-leamning. Moreover, self-leaming process can be
exccuted automatically. Alzorithms for the (23, 24) optimization are selected depending on the results of the cause-
and-effect phase. If the tes* ~d mode is unacceptable, then self-leaming has to be implemented on the real object in
the on-line mode. Inthisc: - conditions (2 and 5) are analyzed within the first phase. This analysis is made via either
natural or specially createc ..anges of input variables upon fixed VH. If the algorithm [3] is used for the (23, 24)
optimization, then the analy sis of conditions (3 and 4) can be made during the second phase. Moreover, algorithm [3]
does not require satisfaction of conditions (6 - 10).
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Appendix

‘This appendix presents an example of the application of the methodology proposed in this paper. Let's consider the
packet switching network (Figure 5) analyzed in [5, pp. 304-305]. The network structure # is defined by a se1 of
nodes, their connecting lines, and the line capacities.

The numbers displayed in Figure 5 represent line capacities C* (where i is a line number, | = 1, ..., 16) in packets-
per-second. In this network, traffic transmitted between any source and destination nodes can be split between differ-
emt paths.

In the described network:
F(VaeH): A oA,

where  V,,, = (V% ... vPPA /FE) is the control vector that is implemented in the network via node routing
tables and defines sets of paths for every source-destination pair of nodes. It also defines in what proportion traffic
must be split between paths. For example, v?¢24 is the portion of the traffic transmitied from source node D to desti-
nation node A via path DCBA. (Contro} vectors are preseated in Tabie 1, columns “Curve A", “Curve B”, snd "Curve -
Cc")

Ainp = (AAB AAC  ABC | AEA) isan input vector, where AA2, for example, is traffic that is entering the
network via node A and destined for node B. When traffic between nodes A and B is split, then A% = T ¥; JA#
is a set of paths between which traffic from A to B is split; M is a traffic in the path j. jer
One can see examples of splitting in Table 1, “Path” column,

A, = AR A" ... AP} is an output vector. A* is, for example, waffic that s entering the net-
work via node A, is transmitted by the network to node 8, and is leaving successfully the network vianode B. (When
traffic approaches link capacity, then the network can drop traffic to avoid congestion. In thiscase A , <A, ar”)

F(HA): Vo =A
is a function that defines the ing of a control vector into a controlled vector
A= (AL .., A ..., A% that represents the actal (in pkis/sec) traffic in every link of the network.
Heedi = ¥ a¥, . ' 25)
z #. r . . . .
where A¥ is traffic in the ' path (&' e K*); K* is a set of paths that contain link i. Al three parameters (%, ¥,and K°)
are govemed by V,,,

16
We evaluate the control @ of the network via the function:® = ¥ A%/ (C*~1) (26)

For simplicity, let’s evaluate an efficiency G of the network according to the following:

6 ‘
G= ZC‘ en




B

For illustration, let's define the network task as one that provides a control upon @ < 14.0 and minG when traffic
between nodes BF and CE varies and is fixed for all other source-destination pairs of nodes. '

When V,,, provides C*> A’ for Vi, then mapping F (V,, H) A, = A, is continuous, scparable, and monatonic,
and A, = A, farouting optimization algorithm allows for the contuous changing of V,_,,, then mapping
F(Apen): (¥, A) isalso continuous. However, it is non-separable because traffic in every link is defined via
(25) and (26) is a non-liner function.

For the developing network control rules, we use the model and optimization algorithm proposed in {3]. This model
and optimization algorithm allow for the continuous changing of V., and they do not require monotonicity of the
optimized function. Development of the rules can be done in the test-bed mode. Since we have already checked the
continuity, separability, and monotonicity of the F (V. H):A,,, = A, andF (A, H): Vo, —A mappings, let’s
go directly to the second phase of the control rules development.

We can start the development with traffic values for 8- F and C-E source-destination pairs which are proposed in

(6]; namely 4.0 pkts/sec for B - F and 3.0 pkis/sec for C - E. During the first step of the optimization (which is based
on varying V,,, upon fixed network structure H), the procedure described in [3] checks the possibility that a control
vector, providing conditions @ < 14.0, can be found. Such a control vector “A™ was found and is stored in Table 1 in
the column, “Curve A traffic (%)". The value of & that corresponds to this vector and the analyzed network structure
and traffic values is 13.56 and G = 425. Since ® < 14.0, the network has an excess of capacity and its structure can
be optimized.

During the second step of optimization, the network structure (link capacities) was changing; however, control vector
v,,, was fixed. Asaresult of this optimization, the capacity of the EF and FE lines were decreased 10 42.63 pkis/sec.
That comresponds to G = 385.26 and ® = 14.0. Then permissibie input spaces were defined. This was done on a fixed
network structuse by varying B - F and C - E waffic, while monitoring & < 14.0 conditions. We started with the orig-
inal structure and control vector that is optimal for B - F traffic that is equal to 4.0 pkis/sec and C - E traffic that is
equal to 3.0 pkis/sec. Modeling allows us to plot curve “A” on Figure 6. The zonc under this curve is a permissible
input space and it defines possible combinations of B - F and C - E traffic for which the analyzed control vector pro-
vides ® < 14.0. In other words, a control rule “Unil B - F and C - E traffic is in the zone below curve “A”, the set of
routing tables, corresponding to “Curve A traffic (%) of the Table 1, should be used” can be applied.

We can see from curve “A” that the maximal B F traffic is limited 10 9.66 pkis/sec and C - E traffic is limited to
8.12 pkisfsec. To analyze the network’s ability to absorb more 8 - F traffic, we can choose a value of B - F traffic
which is above 9.66 pkts/sec. Then we can find the other control vector that provides (5) and @ < 14.0 conditions.
This vector is presented in Table 1, column “Curve B traffic (%”). Analysis of the network with a new controt vector
allows us to plot curve “B” in Figure 6.

We can repeat similar procedures for the C - E waffic that exceeds 8.12 pkis/sec. This give us onc more control vector
(Table 1, column “C") and another curve “C".

As a result of these studies, the following rules can be created: “Until B~ F and C - E traffic is in the zone below
curve “A” ., the set of routing tables corresponding to “Curve A traffic (%)” should be used. If traffic is in zone I, then
use the set of routing tables corresponding to “Curve B traffic (%)" . If wraffic is in zone II, then use the set of routing
tables corresponding to “Curve C traffic (%) . These rules apply to the initial H that corresponds 10 G = 425.

A similar study can be executed with control vector “A” and the network in which the capacities of lines EF and FE
were decreased 10 42.63 pkis/sec. As a result a curve 4, was plotted. The previous rule can be modified by adding
the following: “If B~ F and C - E traffic is in the zone gelaw the curve A, then routing tables corresponding to
“Curve A traffic (%)" should be used and the capacity of lines EF and FE can be decreased to 4263 pkis/sec.”




Table 1: Network Traffic Routing

- Traffic Curve A - . Curve B traffic CuveC
Path
Source | Destination | o 1c/cac) traffic (%) %) trafic (%)
A B 80 AB 1000 100.0 100.0
A c 40 ABC 400 475 1625
AEC 800 525 8375
A D 10 ABCD 800 1000 100
AECD 100 200
ABFD 700
A E 70 AE 100.0 1000 100.0
A F 40 AEF 100.0 1000 650
ABF 350
B A 90 BA 1000 1000 100.0
B c 30 BC 100.0 1000 1000
B ) 30 BCD 503 100.0 87
BFD 97 103
8 E 20 BFE 1000 100.0 100.0
B £ 4.0and vary BF 100.0 1000 1000
c A 40 CBA 5125 25 7125
' CEA 4875 675 2875
¢ 8 80 cB 1000 100.0 1000
c 0 30 co 100.0 100.0 11000
c £ 3.0 and vary CE 1000 1000 1000
c F 20 CEF 100.0 1000 1000
0 A 10 DCBA 300 600 50
DCEA 600 50 600
DFBA 190 350
DFEA 350
) B 30 DB 567 467 800
DFB 43 533 100
D c 30 oc 1000 1000 100.0
D E 30 DFE 600 400 833
DCE 400 600 67
D F 40 OF 100.0 100.0 100.0
3 A 70 EA 1000 100.0 100.0
E 8 20 EFB 100.0 100.0 1000
E c 30 EC 1000 1000 1000
E D 30 EFD 577 723 750
ECO 423 217 250
£ 3 50 EF 1000 1000 1000




. Traffic Curve A Curve B traffic Cuve C
Source | Destination Path
(pkts/sec) traffic (%) (%) fraffic (%)
F A 40 FEA 1000 900 100.0
FBA 100
F 8 49 B 1000 1000 100.0
F c 20 FEC 100.0 1000 100.0
F D 40 FD 1000 100.0 100.0
F E 5.0 FE 100.0 100.0 1000
C-E
100
30
6.0
4.0
20 g \
g \
H \
: \ B-F
' \
20 40 0 80 ne 40
Figure 6
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Abstract

In this paper we describe a procedure to integrate techniques for the adaptation of
membership functions in a linguistic variable based fuzzy control environment by using
neural network learning principles. This is an extension to our work in [2].

We solve this problem by definining a fuzzy error that is propagated back through the
architecture of our fuzzy controller. According to this fuzzy error and the strength of
its antecedent each fuzzy rule determines its amount of error. Depending on the current
state of the controlled system and the control action derived from the conclusion, each rule
tunes the membership functions of its antecedent and its conclusion. By this we get an
unsupervised learning technique that enables a fuzzy controller to adapt to a control task
by knowing just about the global state and the fuzzy error.

1 Introduction

One of the design problems of a fuzzy controller is the choice of appropriate membership
functions or the tuning of a priori membership functions in order to improve the performance
of the fuzzy controller.

We solve this problem by definining a fuzzy error that is propagated back through the
neural-like architecture of our fuzzy controller. According to this fuzzy error, the strength
of its antecedent, the current state of the controlled system, and the control action derived
from the conclusion, each fuzzy rule determines its amount of error and tunes the membership
functions of its antecedent and its conclusion. This paper is an extension to our work in [2),
where we proposed a supervised learning algorithm depending on a non-fuzzy error.

We refrained from just integrating neural nets in certain parts of the architecture as black
boxes as it is done in other approaches, or from adding an extra module to the architecture
taking care of the correction of er.ors for example by weighting the rules according to the errors
as it is described in [4, 12).

Our main concern is to keep the structure of the fuzzy controller that is determined by the
fuzzy rules. We think of those rules as a piece of structural knowledge that gives us 2 roughly
correct representation of the system to be controlled. If the actual output of the controller
differs from the desired behaviour, we consider an unsuitable choice of membership functions
that model the linguistic values of the system variables to be responsible {8].

We undeérstand the adaptations of the membership functions as a reverse mechanism de-
duced from the forwarding inference machinery. We consider the computation of the contro!

value from given measured input values as a feedforward procedure like in layered neural nets
388
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[10], where the inputs are forwarded through the net resulting in some output values. If the
actual output is not able to drive the controlied system to a desired state, an error has to be
propagated back through the architecture changing parameters taking into account the feed
forward propagation of inputs.

Because it is usually not possible to determine an optimal control action for a given state,
we are not able to calculate the error of the produced output directly. This means we cannot
use a supervised learning procedure like standard backpropagation. But by evaluating the state
of the controlled system, we are able to determine a global error measure. This enables us to
define a non-supervised learning algorithm. Training a fuzzy controller with such a learning
procedure allows us to keep track of the changes and to interpret the modified rules.

The term “non-supervised” indicates in this context, that there is no “teacher” providing
a desired output value to be compared to the actual output value. The controller is able
to calculate the fuzzy error by just knowing about the state of the plant. From another
point of view one could say, that the system is watched by a supervisor who uses “good” and
“bad™ signals to guide the learning procedure. But this kind of reinforcement learning is not
considered to be a plain supervised procedure, and so we prefer to call our learning algorithm
non-supervised, although it is derived from the BP-algorithm for neural networks [10}.

Considering the ideas on which fuzzy controllers are based, we think it is a natural approach
to use a fuzzy error for our system, which, according to its structure, we may call neural fuzzy
controller.

In the following sections we first present the structure of our controller. Then we describe
the fuzzy error propagation algorithm that we use as our learning procedure. Next we consider
some simulation results concerning the control of an inverted pendulum and in the last section
we discuss our results.

2 The Neural Fuzzy Controller

We consider a dynamical system § that can be controlled by one variable C and whose state can
be described by n variables Xi,...,Xa, i.e. we have a multiple input - single output system.
For each of the mentioned variables we consider measurements in a subinterval H = [h;, h;)
of the real line. The imprecision is modelled by mappings p : [h1, ha] — [0,1] in the sense of
membership functions with the obvious interpretation as representations of linguistic values.

The control action that drives the system S to a desired state is described by the well-known
concept of fuzzy if-then rules [13], where a conjunction of input variables associated with their
respective linguistic values determine a linguistic value associated with the output variable.
All rules are evaluated in parallel, and their outputs are combined to a fuzzy set which has to
be defuzzified to receive the crisp output value. The conjunction of the inputs is usually done
by the min-operation, and for the aggregation of the outputs of the rules the max-operation is
usually chosen, as it is done by the well-known Zadeh-Mamdani procedure {7, 13].

For the evaluation of fuzzy rules the defuzzyfication-operation constitutes a problem that
cannot be neglected. It is not obvious which crisp value is best suited to characterize the output
fuzzy set of the rule system. In most of the fuzzy control environments the center-of-gravity
method is used [5, 6]. Using this method, it is difficult to determine the individual part that
each rule contributes to the final output value,

To overcome this problem we use Tsukamoto’s monotonic membership functions, where the
defuzzification is reduced to an application of the inverse function {1, 6}. Such a membership
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Figure 1: Defuzzification using Tsukamoto’s monotonic membership functions

function p is chacacterized by two points a,b with p(a) = 0 and p(b) =1, and it is defined as

#(,)={ =28 ifzefabina<hVicebara>d)

0 otherwise
The defuzzification is carried out by
z=p"}y)=-ya-b)+ea

with y € [0, 1]
Consider the following two rules

R,: IF 8 is PM AND § is PS THEN F is PS,
Ry: IF 8 is PS AND 6 is PZ THEN F is PZ,

where PM, PS and PZ represent the usual linguistic expressions positive medium, positive small
and positive zero. The evaluation of those rules is presented in figure 1.

For our purposes we only need to restrict ourselves to monotonic membership functions

to represent the linguistic values of the output variable. For the input variables the usual
triangular, trapezoidal etc. membership functions can be chosen, even if we do not make use
of this possibility in our controller for reasons of simplicity.

An example for the structure of our neural fuzzy controller is depicted in figure 2. The
modules Xy and X represent the input variables that describe the state of the system to be
controlled (plant, for short). These modules deliver their crisp values to their g-modules which
contain the membership functions interpreted as linguistic values assigned to the respective
input variables. The u-modules are connected to the following R-modules which represent the
fuzzy if-then rules, the knowledge base of the controller. Each y-module gives to its connected
R-modules, the membership value p;;(zi) of its input variable X;. It is possible for each pu-

module to be connected to several R-modules. The R-modules use a t-norm (min-operation
390
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Figure 2: The structure of the neural fuzzy controller

in this case) to calculate the conjunction of their inputs and pass this value forward to one
of the v-modules, which contain the membership functions representing the linguistic values
of the output variable. By passing through the v-modules these values are changed to the
conclusion of the respective rule. This means the implication (min-implication in this case) is
carried out to obtain the value of the conclusion, which is usually a fuzzy set in a more general
case. The conclusions are then passed on to the C-module where they are aggregated (e.g. by
max-operatjon), and a crisp control value is determined by a defuzzification procedure.

In our case, however, monotonic membership functions are used, and so the v-modules pass
pairs (ri, 5 (ri)) to the C-module, where the final output value is calculated by

3 rvgl(r)

_ i=1
c_———;——-———'

>
i=1
where n is the number of rules, and r; is the degree to which rule R; has fired.

From a more general point of view one can interpret the messages from the v-modules to the
C-module as fuzzy sets clipped by the min-implication at height r;. The C-module aggregates
the conclusions by a max-operation, and uses a non-standard defuzzification procedure as it is
mentioned above. 391
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As one can easily see, the system in figure 2 resembles a feedforward neural network. The
X-, R-, and C-modules can be viewed as the neurons and the p- and v-units as the adaptable
weights of the network. The X- and C-layer are identified as input layer, and output layer,
respectively, and the R-layer serves as the intermediate or hidden layer that constitutes the
internal representation of the network. The fact that one y-module can be connected to more
than one R-module is equivalent to connections in a neural network that share a common
weight [9]. This is very important, because we want each linguistic value to be represented by
only one membership function that is valid for all rules.

By this restriction we retain the structural knowledge that we put into the system by
defining the rules. In other neural fuzzy systems this fact is not recognized [1, 3] and it is
possible that one linguistic value is represented by different membership functions.

3 The Fuzzy Error Propagation Algorithm

Our goal is to tune the membership functions of the controller by a learning algorithm. Because
it is usually not possible to calculate the optimal control action for a given state of the plant,
so we can derive the error directly by comparing the optimal to the actual value, we are trying
to obtain a measure that adequately describes the state of the plant under consideration.

The optimal state of the plant can be described by a vector of state variable values. That
means, the plant has reached the desired state if all of its state variables have reached their
value defined by this vector. But usually we are content with the current state if the variables
have roughly taken these values. And so it is natural to define the goodness of the current
state by a membership function from which we can derive a fuzzy ei.or that characterizes the
performance of our neural fuzzy controller.

Consider a system with n state variables Xj,..., X,. We define the fuzzy-goodness G; as
. imal .
G = mm(p;’-’:""‘ yeo .,y}':""‘l),

where the membership functions y}","'m‘ have to be defined according to the requirements of
the plant under consideration.

In addition of a near optimal state we also ccnsider states as good, where the incorrect
values of the state variables compensate each other in a way, that the plant is driven towards
its optimal state. We define the fuzzy-goodness G as

Gz = min(p™ P (X, oy Xa)y o pTTPK (X, L X))

where the membership functions u®mPensete; again have to be defined according to the require-
ments of the plant. There may be more than one u¢°mpersate; and they may depend on two or
more of the state variables.

The overall fuzzy-goodness is defined as
G = g(G1,Ga),

where the operation g has to be specified according to the actual application. In some cases a
min-operation may be appropriate, and in other cases it may be more adequ=te to choose just
one of the two goodness measures, perhaps depending on the sign of the current values of the
state variables, e.g. we may want to use G, if all variables are positive or negative and G if
they are both positive and negative.

The fuzzy-error that is made by our neural fuzzy controller is defined as

E=1-G.
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We are now able to define our learning algorithm that works for each fuzzy rule in parallel.
Each rule R; knows the value r; of the conjunction of its antecedents and the value ¢; of its
conclusion. Because we are using monotonic membership funcions, ¢; is already crisp. After the
control action has been determined by the controller and the new state of the plant is known, we.
propagate the fuzzy-error E and the current values of the state variables to each R-module. If
the rule has contributed to the control output, i.e. r; # 0, it has to evaluate its own conclusion.
According to the current state of the plant the rule can decide, whether its conclusion would
drive the system to a better or to a worse state. The actual control value cannot be determined,
but its direction, i.e. sgn(copg), is known. For the case sgn(c;) = sgn(copt) the rule has to be
made more sensitive and has to produce a conclusion that increases the current control action,
j.e. makes it more positive or negative respectively. For the second case the opposite action
has to be " .ken.

Consider that we are using Tsukamoto’s monotonic membership functions. Each member-
ship function can be characterized by a pair (a,b) such that g(a) = 0 and p(d) = 1 hold. A rule
is made more sensitive by increasing the difference between these two values in each of its an-
tecedents. That is done by keeping the value of b and changing a. That means the membership
functions are keeping their positions determined by their b-values, and their ranges determined
by |a — b| are made wider. To make a rule less sensitive the ranges have to be mzde smaller.
In addition to the changes in its antecedents, each firing rule has to change the membership
fanction of its conclusion. If a rule has produced a good control value, this value is made better
by decreasing the difference |a ~ b, and a bad control value is made less worse by increasing
la —bl.

The rules change the membership functions by propagating their own rule-error

e ={ 7T E - if sgn(c;i) = sgn(copt)
R=1\rn-E if sgn(ci) # SSn(Copt)

to the connected - and v-modules. The changes in the membership functions of the conclusions
(v-modules) are calculated according to

new __ ) @k — 0 -€R,;* Jar — bx] if (ax < bg)
a = .
ar + 0 -eR, - Jar — bil otherwise,

where o is a learning factor and R-module R; is connected through vx to the C-module. If
vy is shared, it is changed by as much R-modules as are connected to the C-module through
this membership function. For the membership functions of the antecedents {u-modules) the
follwing calculation is carried out:

¥ ajk, + 0 €R; " lajk, = bk, | if (ajk, < bk}

75y { ajk, — 0 - €R, [ajk, - jk,l otherwise,

where the X-module X; is connected to the R-module R; through the membership function
ik, with k; € {1,.. .85}, and s; is the number of linguistic values of X;. If pji, is shared, it
is changed by as much R-modules as X is connected to through this y-module.

Compared to learning algorithms used in neural networks one can see, that the error is
not just passed back through the system, but that it is propagated to the intermediate layer
constituted by the R-modules, where a rather sophisticated evaluation of this erros is carried
out, which is not typical for connectionistic systems. There the error signal is treated equally
by each component of the network. In our system the R-modules propagate the error back and
forward to the u- and v-modules, respectively, where less complicated calculations lead to a
change of the membership functions, the “fuzzy weights” from a connectionistic point of view.

The neural fuzzy controller has not to learn from scratch, but knowledge in the form of
fuzzy if-then rules can be coded into the system. The learning procedure does not change this
93




structural knowledge. It tunes the membership functions in an cbvious way, and the semantics
of the rules are not blurred by any semantically suspicious factors or weights attached to the
rules.

4 Controlling an Inverted Pendulum

In this section we present the results of a simulation of the neural fuzzy controller applied to
the inverted pendulum (figure 4). An inverted pendulum is a well-known nonlinear dyramical
system, often used to test fuzzy controllers. The sytem is described by two state variables that
are the input variables to the controller, the angle @ measured against the upright position and
the angle velocity @, which also describe the error and the change of error. The pendulum is
~ controlled by one control variable that is the cor*rol output, the force F applied to the base
of the rod that is only allowed to fall to the lett or to the right. We use a simplified version of
the inverted pendulum in our simulation. The system is described by the differential equation

(m + sin? 0)6 + %é’ sin(20) — (m + 1) sin@ = ~F cosé.

The movement of the rod is simulated by a Runge-Kutta procedure with a timestepwidth of
0.1.

There are eight linguistic values attributed to each of the three variables. This are the
common values PL, PM, PS, PZ, NZ, NS, NM, NL. Because we use monotonic m :mbership-
functions that are not symmetric, we modell the value Zero as PositiveZero and NegativeZero.
A typical definition for the membership functions used in our simulation is depicted in figure
3. The exact initial values of the above mentioned characterizing point b with p(b) = 1 and
the range d defined asb—a with p(a) = 0 for each membership function can be found in the
following tables.

The rule base used to construct the controller is presented in figure 5. It was found that
the controller was already able to balance the pendulum with this rule base and the initial
membership functions. However, after the learning procedure was activated, the performance
of the system became much better. It was also found that the controller was not able to cope
with extreme initial positions of the pendulum, e.g. 8 = 20 and @ = 2, when only the initial

NL NM NS Nz PZ PS PM PL
\ ! ‘
|

=90 0 9% 9

Figure 3: Monotonic membership functions modelling the linguistic values of ¢
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Figure 4: The inverted pendulum

0
PL{PM | PS | PZ | NZ | NS [ NM [ NL
PL || PL
PM PM | PS | PS
PS PS | PS | PS
6| PZ PS | PZ
NZ NZ | NS
NS NS | NS | NS
NM NS [ NS [ NM
NL NL

Figure 5: The rule base of the neural fuzzy controlier

membership functions were used. But when the learning algorithm was applied the controller
was able to balance the rod after only three trials, i.e. the pendulum fell down ({61 > 90) just
twice. . :

The results of the simulation can be found in table 1. We have only documented the changes
in the membership functions of 8. For ihe other two variables similar changes have been found.

The fuzzy error E has been defined by

1 - min(1 - l§1,1 - {,%) if sgn(8) = sgn(f), -3 <9 <3, -03< <03
E=1 0+100 if sgn(0) # sgn(f), ~3< B+106<3

1 otherwise.
That means the fuzzy error is defined by one two-dimensional and two one-dimensional mem-
bership functions. The learning rate o has been set to 0.01.

The next table shows the performance of the controller for each of the five runs. Each run
consisted of 3000 loops and has been performed with and without the learning procedure. The
performance is measure by the average over all absoulte values of § measured during a run with
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Run 1 Run 2 Run 3 Run 4 Run 5

bl imtaaal @ =0 |8 =10 g = 20|60 = 20]6 = 30
g =01l6 =1 |é=1|6=2 6 = 2

NL [-90 | 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000
NM | -70 { 60.0000 60.0000 60.0000 60.0000 60.0000 | 171.9157
NS |-40 | 40.0000 48.9108 47.5219 49.0139 64.3483 74.5797
NZ 0[-13.0000 [ -8.0298 -9.5576 | -10.0961 -9.6819 -9.2074
PZ 0] 13.0000 31.4427 17.6432 13.5961 13.6028 15.1134
PS | 40 | -40.0000 | -49.8010 -48.2032 [ -50.0540 -47.7372 -60.5255
PM | 70 | -60.0000 -60.0000 -61.0686 -62.0523 -82.9168 | -180.7220
PL | 90 | -60.0000 -60.0000 -60.0000 |  -60.0000 -60.0000 -60.0000

Table 1: The changes in the ranges of the membership functions of &

ranl{run2 | run3 run 4 run 5
§ without
learning 4.05| 4.17| 4.29 | n.a.t.b. | n.atb.
6 with
learning 056 | 065| 074 213| 536
no. of trials 1 1 1 3 11

Table 2: The performance of the controller

n loops:
n
3 16l
6= —.
Z n

The controller was able to keep an angle near zero with activated learning procedure, and was
also able to balance the pendulum beginning from the extreme positions of runs 4 and 5 in 3
and 11 trials, respectively, whereas the controller was not able to balance (n.a.t.b.) the rod in
these cases without learning.

5 Discussion

We have presented a learning algorithm for a neural fuzzy controller based cn a fuzzy error
measure. The structure of the controller resembles a neural network and the fuzzy error pro-
pagation can be compared to non-supervised learning procedures as they exist for certain
kinds of connectionistic systems. Simulations of the controller have shown that the learning
procedure improves the behaviour of the fuzzy controller and is able to handle situations where
the non-learning controller fails.

The introduced fuzzy error measure is suitable for describing the performance of the con-
troller and allows each rule to determine changes for the membership functions of its precon-
ditions and its conclusion. The learning algorithm starts from a predefined rule base that can
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be obtained by clustering methods e.g. [11), and it does not change the structural knowledge
encoded in these rules. It leaves the semantics of each rule intended by the user unchanged,
but removes the errors caused by an inaccurate modelling by changing the fuzzy sets. The

results of the learning procedure can be easily interpreted [8]. It is not possible that two ryjes.

use different fuzzy sets describing the same linguistic value.

Other neural fuzzy control environments, which are based more on neural network a; chj-
tectures [1, 3], often use factors to weight the rules or allow the rules to have different repre-
sentations for the same input value. From our point of view in this case there are semantics
involved, that are different to our approach. This has to be considered when an adaptjve fuzzy
control environmemt is used,

An extension to the presented learning algorithm that js used in combination with a fuzzy
neural network that is capable to learn fuzzy rules and membership functions js Presented in

[9).
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Abstract

In the present work, we consider the general problem of
knowledge acquisition under uncertainty. Simply stated, the problem
becomes: how can we capture the knowledge of an expert when the
expert is unable to clearly formulate how he or she arrives at a
decision?

A commonly used method is to learn by examples. We observe how
the expert solves specific cases and from this infer some rules by
which the decision may have been made. Unique to our work is the
fuzzy set representation of the conditions or attributes upon which
the expert may possibly base his fuzzy decision. From our examples,
we infer certain and possible fuzzy rules for closing a customer
service center and illustrate the importance of having the decision
closely relate to the conditions under consideration.

1. Introduction

Much effort has recently been devoted to studying the problem of
knowledge acquisition under uncertainty. Uncertainty arises in many
different situations. It may be caused by the ambiguity in the
terms used to describe a specific situation. It may also be caused
by skepticism of rules used to describe a course of action or by
missing and/or erroneous data. [See (Arciszewski & Ziarko 1986),
(Bobrow, et.al. 1986), (Wiederhold, et. al. 1986), and (Zadeh
1983).]

To deal with uncertainty, techniques other than classical logic
and the application of statistical methods need to be developed.
[(See Mamdani, et. al. (1985) for a study of the limitations of
traditional statistical methods.] Rough set theory can address the
limitations of statistics in dealing with uncertainty while
allowing rules to be extracted that describe a course of action or
a gecision to be made. [See (Fibak, et. al. 1986), (Grzymala-Busse
1988), (Mrozek 1985 & 1987), (Pawlak 1981, 1982, 1983 & 1985), and
(Arciszewski & Ziarko 1986).] Fuzzy set theory is another tool used
to deal with uncertainty where ambiguous terms are present. [See
(zadeh 1979, 1981 & 1983)] Our work builds on these alternatives
to statistics, allowing us to infer knowledge from the uncertainty
associated with ambiguous (i.e. fuzzy) terms.
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2. Development of the Model

The main purpose of the present work is to study the general
situation where the decision maker is faced with uncertain (i.e.
fuzzy) conditicns and makes a fuzzy decision which might be
strongly or weakly based on these conditions. In this situation,
fuzzy rules can be extracted. We shall present the basic notations
and concepts for developing a methodology to extract such rules
from fuzzy conditions and fuzzy decisions. [Most of these concepts
are discussed in (Grzymala-Busse 1988), and (Pawlak 1981, 1982 &
1985) as they relate to crisp sets.]

Basic Notations and Concepts

Let U be the universe. Let R be an equivalence relation on U.
‘Let X be any subset of U. If [x] denotes the equivalence class of
¥ relative to R, then we define

R(X) = {(x € U/[x] < X) and

R(X) = {(x € U/[X] n X » o).
R(X) is called the lower approximation of X and R (X) is
called an upper approximation of X. Then R(X) ¢ X < i(X). it

R(X) = X = R(X), then X is called definable.

An information system is a quadruple (U,Q,V,7) where U is the
universe and Q equals C u D where C n D = &. The set C is called
the set of conditions (attributes); D is called the set of
decisions. The set V stands for value and 7 is a function from UxQ
into V where 7(u,q) denotes the value of condition q for element u.
The set C induces naturally an equivalence on U by partitioning U
into sets over which all attributes are constant. The set X is
called roughly C-definable

if R(X) » o and ﬁ]X) » U. It will be called externally C-definable
if R(X) = o and-k(X) * U. It will be called internally C-definable

if R(X) * @ and R(X) =.U.

Unfortunately, uncertainty is all too often present in the
conditions and the decisions. The conditions and the decisions
fail to partition the universe into well-defined classes and some
overlap is present. We will deal with the issue of using rough set
theory to handle the lack of clearly differentiated partitions by
using fuzzy sets. We will thus need to "fuzzify" rough set theory.

Rough Set Notation Applied to Fussy Sets

Two functions on pairs of fuzzy sets that will be used to
determine rules for closing a utility company’s customer service
centers (CSCs). We define:

I(AcB)=in Max {1 - A(x), B(x)) (1)

J(A#B)=M?x Min (A(x), B(x)}. (2)
Here A and B denote fuzzy subsets of the same universe. The

function I(A c B) measures the degree to which A is included in B
and J(A # B) measures the degree to which A intersects B. It is
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clear that I and J:.can be expressed as
I(AcB)=i¥f (A -~ B) ) e (3)

J (A#B) =Max (AnB). N (4)

iIn addition, the following relation holds:
I(AcB) =1 - J(A#-B) . (5)
We can define the fuzzy terms involved in the decision as a
function of the terms used in the conditions. Let (B;) be a finite
family of fuzzy sets. Let A be a fuzzy set. By a lower
approximation of A through (B;}, we mean the fuzzy set
R(A) =y I(BcA)BE (6)

The decision making process may be simplified by disregarding all
sets B, if I ( B; € A) is less than some threshold a. Then,
R (A) = ? I (B, cA ) By (7)

over all B, for which I ( B, c A ) 2 a. Similarly, we can define
the upper approximation of h through (B;} as

E(A)u=¥;\1(xai#1x)ni (8)

over all B, for which J ( By $A)2 a.

The operators I and J will yield two possible sets of rules: the
certain rules and the possible rules. The data given for the
Customer Service Centers (CSCs) will be converted to fuzzy
diagnosis of the attributes and we will be able to extract fuzzy
rules from the raw data. Each rule for the decision to close a CSC
will have some measure of belief associated with it. The primary
objective is to see to what degree a combination of attributes is
a subset of the decision (certain rules) or intersects the decision
(possible rules) to close a customer service center. In addition,
fuzzy terms involved in the decision have a lower and an upper
approximation so that we have a measure of the minimum degree to
which the lower approximation implies the decision and the minimum
degree to which that decision satisfies the upper approxiration.

It is important to realize that the present methodology does not
give any indication of the quality of the decision. What is
determined is how closely the decision maker seems to depend on the
values of the selected set of attributes. If the decisions seem to
follow consistently these values and if we trust the decisicn
maker, we then have acquired knowledge, in terms of these
attributes, as to how decisions are made.

3. hpplication

Houston Lighting & Power Company is the largest investor-owned
electric utility in the Southwest. HL&P is responsible for
generating and distributing electricity throughout twelve counties
surrounding Houston. Even though it is a private company, its
operations are regulated in Texas by the Public Utility Commission
(PUC) .

In November 1988, HL&P filed a request with the Public Utility
Ccommission for a $432 million rate increase. The public’s
perception of HL&P’S stability and sound judgment in the daily




management of its operations was critical to the outcome of the
rate case. HL&P needed to show that its decisions and operating
procedures were initiated with total consideration given to
effectively serving its customers. '

However, the company’s management felt that in order to reduce
operating expenses in the event that the rate request before the
PUC was denied one or more Customer Service Centers (CSCs) might
have to be closed. These customer service centers handled walk-in
customer traffic for payment of bills and general customer
inquiries and, thus, were operated for the public’s convenience.
With the rate increase request before the PUC, HL&P had to
carefully analyze the CSC closing decision. The main consideration
for HL&P was the public’s reaction. Although a decision to close a

" site would potentially impact only a few customers, there might be

those who challenged the PUC rate hike request on the grounds of
paying more for less service.

HL&P investigated all relevant factors in making its decision.
The difference in relative operating expenses of CSCs was
negligible according to the company'’s operating and maintenance
budget. Therefore, operating cost could.not be regarded as a major
consideration in the elimination of one of the CSCs. Four factors
could be considered in this decision: the total number of
customers in a district, the increase or decrease in a district’s
population, the number of customers utilizing the CSC in relation
to the district’s population, and the distance that customers
would have to travel to an alternate CSC in the event their local
cSC was closed. (See Table 1.)

TABLE 1: Customer Service Center Data

Avg. Customers in $ Change in Usage/ Rerouting
District Custonrers Population Miles
Bayshore 38,510 5.1 4.64 15
Baytown 36,360 -1.4 21.5 15
Brazoria 20,689 3.4 14.07 20
Brazosport 21,976 .4 8.51 20
Cypress 44,074 8.3 1.87 17
Fort Bend 39,145 5.3 15.5 18
Galveston 31,263 - .1 36.44 20
Humble 55,911 1.0 12.44 15
Katy/Sealy 26,760 2.4 18.54 17
Wharton 8,707 - .74 39.43 18
NOTE: All of the above is based on 1985-1987 data.

Based upon the data given in Table 1, one of the authors served
as a decision maker in specifying a value indicative of a high
number of customers in the district and a low number in the
district; a great and a small percent change in usage; a high and
a low percentage of customers utilizing the center; and a large and
small rerouting distance. A high number of customers was 60,000 and
a low number of customers was 5000 A great percent change was
9.00 and a small percent change was + 0.1. A high usage population




ratio was 40.00 percent and a low usage was 1.00 percent. A large
rerouting distance was 20 miles and a small distance was 10 miles.
The degree to which each site satisfied the definition of high,
low;-great, small; high, low; and large, small is given by dividing
the actual data given in Table 1 by the parameter values defined
above to yield those values given in Table 2.

TABLE 2: Values for Fuzzy Sets of Conditions

Avg.Customers in % Change in Usage/ Rerouting
pistrict customers Population Miles

HIGH 1O0W GREAT SMALL HIGH 1OW LARGE SMALL

Bayshore .640 .130 .567 .020 .116 .216 .75 .667
Baytown .606 .138 .156 .071 .538 .047 .75 .667
Brazoria .345 .242 .378 .029 . .352 .071 1.00 .500
Brazosport .366 .228 .044 .250 .213 .118 1.00 .500
cypress .,735 .113 .922 .012 .047 .535 .85 .588
Fort Bend .652 .128 .589 .019 .388 .065 .90 .556
Galveston .521 .160 .011 1.000 .911 .027 1.00 .500
Humble .932 .089 .111 .100 .311 .080 .75 .667
Katy/Sealy .446 .187 .267 .042 .464 .054 .85 .588
wharton .145 .574 .082 .135 .986 .025 .90 .556

Using the total operating revenue generated for each service
center, our decision maker determined that if revenue was less
that 1% of the total generated from all centers, the CSC would be
closed. Conversely, the center would not be closed if revenue
exceeded 10% of the total. The raw data and the reflective
valuation of each center for closing and not closing are given in
Table 3.

¢

TABLE 3: Revenue of each CSC & Closing Wweight

Total Dollar Revenue Close po Not Close
Bayshore 270,411,636 .039 1.000
Baytown 142,262,298 .075 1.000
Brazoria 44,464,243 .239 .419
Brazosport 144,290,786 .074 1.000
cypress 92,178,304 .115 .869
Fort Bend 88,498,221 .120 .834
Galveston 89,125,871 .119 .840
Humble 120,219,083 .088 1.000
Katy/Sealy 53,675,510 .198 .506
wharton 15,660,308 .677 .148

1,060,786,260

of course, no one at HL&P would specifically state exactly how
the decision to close a CSC would pe determined. Since most
pusinesses define profitability in terms of revenue generated and




since HL&P representatives had obtained this information, we have
assumed that the total operating revenue would be the major factor
affecting the decision to close a CsC.

In reality, many factors, some of them even unknown to the
decision maker himself, may impact the decision of closing a
Customer Service Center. Still, we are interested in learning by
examples how much the decision can be attributed to the attributes
for which HL&P had accumulated data for each CSC.

Exanple 1

In the first example we selected two attributes:
Usage, Population and Rerouting Distance.

First, we let x; denote the customer service centers, such that
x, = Bayshore, X, = Baytown,..., X, = Wharton. Then D, = Close the
csc,” and Dy = Do Not Close the CSC. The decision to close the
facility can be evaluated as:

D, = .039/X, + .075/X, + .239/%; * .074/%, + .115/%5 + .120/%

+ .119/x, + .088/%g + .198/x%, + +677/%4q

This indicates that based upon revenue generated, Wharton is a
fairly good example of a CSC to be closed, while Bayshore is not a
good example of D,.

Likewise, we can indicate the degree of membership of each CSC
for each fuzzy-defined condition/attribute; High (H)
Usage/Population, Low (L) Usage/Population, Large (G) Rerouting
Distance, and Small (S) Rerouting Distance. For example, we define
the fuzzy set H as:

H = .116/%, + .538/X, + .352/%; + .213/x, + .047/%5 + .388/% +
L911/%, + .311/Xy + .464/X%, + .986/%

We compute the pinimum degree to which possible combinations of

conditions/attributes are related to decision D,. Thus,

I (HecD )= .19 I (HnGcD, ) = .119
I (LcD ) = .465 I (HnScD, ) = .462
I (GeD ) =.074 I (LNGGcD,) = .465
I1(ScD ) =.333 I (LAScD )= .465

(

With a threshold of a = 0.40, the rules for closing a CSC are:

1. If usage/population percentage is low (i.e. 1% or less of
the customers in the district utilizing the CSC), then the
osC should be closed. (D, is present .465 or Belief = .465)

2, If the usage/population percent is high (approximately 40%
of the customers in the district utilize the CSC) and the
rerouting distance is small (approximately 10 miles), then
the CSC should be closed. (Belief = .462)

3., If the usage/population percent is low and the rerouting
distance is high (20 miles), then the CSC should be closed.
(Belief = .465)

4. If the usage/population is low and the rerouting distance is
low, the €SC should be closed. (Belief = .465)

Since no new information is provided by rules 3 and 4, the
extracted rules for closing are:

1. If usage/population percentage is low then the CSC should be
closed. (The belief is .465.]

2. If usage/population is high and the rerouting distance is
small then the CSC should be closed. {The belief is .462.]
Rule 1 is certainly reasonable. Rule 2 sounds less reasonable. It
is generated by the decision maker deciding fairly strongly in
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favor of Wharton to be closed, although its usage/population was
definitely high and its rerouting distance was over .5 small. From
such examples, vwe jearn that for high usage and relatively low
rerouting distance a CSC can be closed. Note that from the data, we
do not feel that strongly about these rules. The extracted ules
would not be sufficient to infer closing from past experience.

We now measure the degree to which the fuzzy sets intersect D,

J (H#D, ) = .677 J(HNnG#D )= .677
J(L#D, ) =.115 J(HNnS#D )= .556
J(G#D, ) = .677 J(LNG#D, ) =.115
J (s #D, )= .556 J (LnsS#D ) =.115

"With a = 0.60, thewacceptable rules are:

5. If usage/populatidn’percent is high, then closing is

possible .667.
6. If rerouting distance is great, then closing is possible

.677.
7. If vsage/population is high and rerouting distance is

great, then closing is possible .677.
The extracted rule would be Rule 7. The possibility of closing if
usage/population is high and rerouting distance is great can’t be
discounted. Brazoria was recommended to be closed with strength
.239 versus not closing with strength .419. Nevertheless, the
rerouting distance was definitely high and the usage/population was
rated .352 high versus .071 low.

We determine the lower approximation of D,, using a =.40, as:
R (D,) = .465 L U .465 (LnG) u.465 (L nS) v .462 (Hn s)

= .465 L U .462 (H n S) .

Note that this result shows Rule 3 and Rule 4 to be superfluous to
Rule 1 and unnecessary for the calculation of R (D,) -

We can also show that Rules 5 & 6 should not be accepted since
the upper approximation of D, for a = .60, results in Rule 7:

'R (D) = .677 HU .677 G U .677 (H n G)

= .677 Hvu .677 G

Although, Rule 1 appears to be the most logical rule to accept,
it eliminates Wharton as the primary candidate for closing. It
should be noted that Wharton’s valuative scores based on high
customer utilization (.986) and relatively large as well as
relatively small rerouting values (.90 and .556, respectively) are
influencing the second and third decision rules. This example is an
excellent illustration of the necessity for the attributes to
properly reflect the decision criteria. In this example, the
decision to close a center was to be based solely on revenue
generated. This means that HL&P would select a center which
generated the jowest revenue as that to be closed and the one which
generated the highest revenue becomes that least likely to be
closed. This suggests that Wharton is our best site to close.
However, the usage/population percentage at Wharton is high
leading one to the conclusion that, in general, those centers with
high customer usage should be closed.

Exanple 2

A secord example is given to show that a closer relationship

petween the decision and the attributes selected will lead to
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seemingly more 1logical rules being determined. For this
illustration, we used the size of the customer base with the
percent usage which suggests that although the percent usage may be
high,-there -may be many fewer customers at the center generating
much less revenue, thus making the center a ~andidate for closing.

Using the values of the fuzzy sets High (NH) and lLow (NL) for

the number of customers, and High (UH) and Low (UL) for the
usage/population percentages given in Table 2:

I (NHcD, ) = .088 I (NHNnUH cD, ) = .463
I(NLC’.DA)=.677 I(NHnULcDA)=.465
I (UHcD )= .119 I (NLAUHcD, ) = .677
I(ULC D = ,465 I(NLNULCD, ) = .87
W1th a = .60, the following rules would be determined:

1. If the number of customers is low, the belief that the CSC
should be closed is .677. _
2. If the number of customers is low and the usage/population
is low, the CSC should be closed .87.
3. If the number of customers is low and the usage/population
is high, the CSC should be closed .677.
Rule 3 is redundant and we would keep Rules 1 and 2.
Also using a = .60, we can determine the following rules from:

J (NH 4 D, ) = .239 J(NENUH#D, ) = .239
J (NL # D, ) = .574 J (NENUL#D,) = .115
J (UH D, ) = .677 J (NLNUH $D,) = .574
J(UL#D = .116 J (NLaUL4#D,) =.113

4. If the number of customers in the district is low, closing
is possible .574.

5. If the usage/population is hlgh, clos1ng is possible .677.

6. If the number of customers in the district is low and the
usage/population is high, closing is possible .574.

From these rules, we select Rule 5.

Computing the upper and lower approximations based on a = .60,
we have:
R (D) = .677 NL u .87 ( NL n UL) u .677 (NL n UH) and
R (D, ) = .677 UH such that:

ﬁus, the acceptable rules where Rule 1 and Rule 2 come from
certainty and Rule 3 come from possibility are:
1. If the number of customers is low and usage/population is
low, the CSC should be closed. [ Belief is .87.]
2. If the number of customers is low, the CSC should be

closed. [Belief is .677.]

3. If the usage/population is high, the CSC can be closed.

{Plausibility is .677.]

If strictly ordering the CSCs to be closed based upon Rule 2,
Wharton would be the decision maker’s first choice for closing
(followed by Brazoria and Brazosport). Although Rule 3 appears to
be illogical, if strictly ordering a center to be closed based upon
this rule, Wharton would be selected (followed by Galveston and
Baytown). If using the more logical Rule 1, Wharton would not be
considered first. Brazoria, ranking second in having the lowest
number of customers and fifth in having a low usage/population
ratio would be one possible choice for a CSC to be closed.
Brazosport with the third lowest number of customers and the third
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1owest usage/population ratio would also be a good choice for
closure. Notice that these were the gécond choices if strictly
ordering by Rule 2, pased upon the number of customers in the
district. Since. the number of customers in the district would
directly relate to the revenue generating power of a CSC, this
example provides a more realistic result and supports the need to
have well chosen attributes, reflecting the decisions made. ‘

4. Conclusions

Since the crisp set is a limiting case of the fuz. setting,
expected benefits that arise from our fuzzy set based metnod are a
more realistic and general approach to Xnowlea : acquisition.
Acquisition of knowledge through examples, which is particularly of
interest when the decision maker is unable to articulate how he
arrives at a decision, is a very natural approach to learning. Our
process allows the user to learn and determine rules based on the
examples available. Of course, the quality of the learning depends
upon the relevance of the chosen attributes to the decision.

The process allows rules to be determined through incorporation
of attribute data for all available alternatives for which a
decision must be made. The decision maker can specify a value he
considers to be high, medium, low, etc.and we can calculate the
degree of membership of each alternative in the fuzzy set. These
values can also be subjectively assigned after examination of the
attribute data. Ranges of values can be specified as we did for the
decision to close a customer service center.

The rough sets formulation as the bas’s for determining the
decision rules is easily- performed through maximization - and
minimization of combinations of the fuzzy set values. The process
is not computationally intensive, although it does become more
labor intensive beyond the two attribute with one decision case
presented in this paper. The authors hope to have a computer
program availaple in the near future to handle large-scale
problems.

Again, we stress that the proposed method does not give an
answer to: "are the decisions made, good decisions?". 1t is assumed
that the expert is Xnowledgeable about the conditions under which
the decision will be made. our methodology gives an answer to "how
closely does the expert follow the attributes under consideration
in making his decision?". If the decisions seem to closely follow
the values of the attributes, then strong rules can be acquired
through examples 2nd the expert’s knowledge can be put into machine
representable form.

At this time, HL&P has not made a decision to close either of
the customer service centers. Management has relied on reducing the
operating costs at each of the centers by moving to the company’s
downtown Houston location, the CSC employees who generally had only
telephone contact with district customers. A complete evaluation
of the data from Tables 1, , and 3 is to be performed and
submitted to HL&P as soon as the prototype computer program is
completed.
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ABSTRACT

Concurrent engineering starts to be more and more important practice in
manufacturing.

One of the problems in concurrent engineering is uncertainty in the values of input
variables as well as operating conditions.

The problem solved in the presented paper consists in the simulation of processes
where the raw materials and the operational parameters with fuzzy characteristics are
applied. The processing of fuzzy input information is performed by the vertex
method and commercial simulation packages POLYMATH (1990) and GEMS(1987).
The examples are presented to illustrate the usefulness of the method to the
simulation of chemical engineering processes.

INTRODUCTION

There are two main reasons to model uncertain knowledge in chemical engineering.
The first one is the scale of the phenomena. The micro scale is of the growing
interest for the chemical engineers. The key examples are the biochemical processes
and new materials technologies. The analysis on the level of agglomerates, cells or
molecules is of the other type than that on meso or micro scale.

The second reason is the global change of the estimation of technologies in the
surrounding world. Environmental, economic, and cultural analysis is needed now to
answer the question: Is a given technology good or not ?

In both cases, the sources of the uncertainty is the process complexity. The more
complex the process is, the less information could be presented in numerical and
objective way. Such a situation is a consequence of the behaviour of complex
systems. It is not a consequence of the lack of the good tools of analysis.

The chemical engineers have to realize that another type of processes requires
another tools for understanding and description.

The change in design process is the additional reason for the use of fuzzy
calculations.

Design in chemical engineering is a long and complex process.
Its consequences are a long product development cycle, high manufacturing costs, and
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often, poor final quality. The: main reason for this situation is the sequential nature of
the design process. Fhis way of proceeding results from the fact that the design

~ objectives and.constsaints are formulated gradually in all stages of the product and

process development. In the next step the product is tested and, if the criteria are
not achieved, then the design procedure is repeated.

“The name of such method is serial engineering.

The present chemical process industry situation is characterized by the growing
competition, rising degree of complexity, and demand of high quality products. To
survive in 2 new situation, the companies have to reduce the time from market
demand to the full scale production to reduce the costs and to be more flexible.
These demands evoke the need of new managerial as well as engineering techniques.

One of the new engineering methods is concurrent engineering

(Rosenblatt and Watson, 1991, Ishii, 1990 and Hartley 1991).

Its essence is an integration of various manufacturing, marketing and engineering
activities. This demand is realized by the team work of the multi-disciplinary groups.
The people from marketing, design, manufacturing, sales, and services are working
together. They formulate the required properties of a product, transform them into
the engineering data, study the resulting manufacturing problems and establish final
parameters of the product

The tool for communication inside such a multidisciplinary team is a “house of
quality”, (Hauser and Clausing 1988, Thackeray and van Treeck 1990).

The integration of various activities resuits in the simuitaneous generation and
evaluation of the different variants of product and process. The comparison of both
types of engineering is presented in Fig 1.

The imprecise values of raw materials properties, operation parameters as well as
product demands are the consequences of the application of the concurrent
engineering tools in chemical engineering problems.

The properties of raw materials are imprecise especially in batch ard bio- processes.
It is due to the nonhomogeneity of the substrates that is normal in noncontinuous
processes as well as in natural products. '

The problems of the imprecision in the operational parameters reflect the fact of the
contradictory conditions imposed on the process. The contradictions are the
consequences of the fulfilling of tke different criteria. Given criterion could be
reached at the given set of parameters. In order to obtain the reasonable solution the
compromise has to be reached. The result of such compromise is the creation of the
operational ranges for parameters instead of crisp values of variables.

The variability of demund is a popular situation that results from the market changes.

Uncertainty of stochastic type could be treated by the well known probabilistic
methods. However, there has been very few attempts to take directly into account the
non-stochastic lack of precision in simulation as well as in optimization (Edgar and
Himmelblau 1989). There are several approaches to study the influence of
uncertainty on the output variables. The most popular methods are flexibility and
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sensitivity analysis. They are complicated and time consuming. The direct
introduction of fuzzy variables into the existing packages is the simplest way to
analyse the non-stochastic uncertainty. There are several approaches to study the
uncertainty in design (Wood et aL 1991). In the present paper the vertex method is
applied to introduce the fuzzy values into the existing programs.

VERTEX METHOD

The vertex method is based on the « - cut concept and the interval analysis
proposed by Dong and Shah (1987). It enables the calculation of the membership
function g, of the following expression:

Y= @ ) ) b))

where X ,.., X , are fuzzy variables.

Let us assume the triangular form of ., membership function. At the given

«- level, the values of the membership function are [a,, b,] as it is shown in Fig. 2.
As a result for the given Xi,.., X, and & - cut one obtaias the set of intervals [a;, b|],
w, (2, by . The set of the intervals forms an n-dimensional region with 2" vertices.
An example for n=2 is given in Fig. 3. To obtain the y value in Eq.1 on the « - level
one has to calculate:

Yy =f(C) ey =S (c) @

where ¢ { = (@{ ey 33 ) ey €¢ = (b, b
The y value in Eq. 1 at the level « is expressed as the interval function:

Y = [min f (c) , max f (c)] @

The values of Y calculated on the different @ - levels create the output fuzzy values
as presented in Fig3.

If the membership functions of fuzzy variables are triangular, then the number of
runs equals 2° , where n is a number of fuzzy variables. The fuzzy output is
determined at different « - levels according to Eq.3. The Y values are calculated
for « = 1 and « =0, in this paper, for the sake of simplicity.

EXAMPLES

The examples presented below illustrate the fuzzy simulation in concurrent
engineering problems. The fuzzy forms of operating conditions as well as raw
material properties are obtained applying "the house of quality " method.

The imprecision of the operation conditions and physico-chemical properties is
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studied in the first example.
The influences of imprecise parameters of raw materials and operational conditions
are examined in the second example.

Example 1.

The follow:ng reactions has been studied by Himmelblau (1970):

k,
A+B ~ C+F

k
A+C -~ D+F

ks
A+D ~ E+F

The proposed model for the reacting system is as follows:

L= - kAB - KAC - kAD

L - - kas
L = kB - kAC
L - LAC - kD
L - kD

where the kinetic constant k; = a, exp(-' ; / T ) i=123.

a,, b, are constants and T is process temperature.

The initial and final conditions with concentration expressed in mole/liter and time
in minutes has been reported as:

A(0) = 00209, B(0) =0.00697, C(0) = D(0) = 0 and t =200.

The nominal values of kinetic constants have been reported as:
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k, = 147, k, = 1.53, ky = 0.294. .

Aim of the study is to determirz: iite seasitivity of the concentrations A and E
caused by the imprecise values T.

Temperature T is given in the form of fuzzy set It is a consequence of the
appplication of the "house of quality” method. -

Solution
The following fuzzy kinetic constants result from the "house of quality * method:

k, = (13200 14700 15.500)
k,=( 1.180 1530  1720)- -
k,=( 0253 0294  0315)

There are n = 2 3 = 8 vertices ¢, according to vertex method. Given vertex c, is a
vector composed of three kinetic constants. The calculations should be realised at
different a - levels of the fuzzy kinetic constants.

The values of all vertices at &« = 0 are nresented in Table 1.

If « =1 then calculations are performed only in one vertex ¢ ( k, = 14.7, k, =
1.53, k5 = 0.294 ).The system of differential equations has to be solved for ali the
combinations of the kinetic constants’ values.

As a result the profiles of concentrations A and E are obtained using (POLYMATH
1990 ). -

Because there are no extremal points, fuzzy values of A and E after time t = 200
min could be determined from the Eq.3. In the opposite situation instead of applying
Eq.3. another approach should be used (Wood et al. 1991).

At « = 0, according to Table 1, minimal and maximal values of A and E are:

min A = 0.00551 , max A = 0.00631, min E = 0. 00151, max E = 0.00189.

At « = 1 there is only one point to calculate. The resuits of simulation are given in
Table 1 for vertex 9.

The resulting fuzzy concentrations A and E obtained for fuzzy kinetic coefficients are
as follows:

A = (0.00551 0.00573 0.00631)
E = (0.00151 0.00177 0.00189)

Example 2

The problem consists in the estimation of the product characteristics that are
influenced by the the imprecise properties of raw material and operation conditions.
The process under consideration is mechanical pulp mill peroxide bleaching. The raw
material is unbleached pulp and the product is bleached pulp.

The raw material properties are light scatttering, brightaess, and initial pulp pH. The
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operating conditions are limited in this example to initial peroxide concentration. The
product properties are brightness, final pH and metal ions content.

The process has been simulated with (GEMS 1987). Usually, the raw material is not
uniform. As a result, its parameters could not be determined in a precise way. As a
consequence, the operating parameters are uncertain, too. ' .

The aim is to estabilish the product properties taking into account the imprecision
of raw materials properties and operating conditions

Solution .

The form of fuzzy input variables of raw material is presented in Table 2. The results
of some simulations are presented in Table 3. Resulting interval values are given in
Table 4. The fuzzy characteristic of products is determined by Cartesian product of
two fuzzy sets y, and y , (Dubois and Prade 1988). The resulting fuzzy set is as
follows:

o . 0 . 0 . 0 ;
(7.3; 68.77) (7.3, 711.85)  (8.53; 68.77) (8.53; 71.85)

1 . 1 . 1
@75, 75.84)  (8.93; 74.32) (8.93; 75.64)

CONCLUSIONS

The presented method can be used in concurrent engineering approach to process
design. The main advantage of the presented method over the existing approaches is
its ability to study the uncertainty in the raw materials characteristic as well as in
operating conditions. It could be used with commercial packages without any changes
of the existing programs. The construction of the * compact * package is the main
aim for the future. Such a package should be composed of simulator, vertex method
module and house of quality interactive program.
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Table 1. The vertices coordinates of kinetic constants and simulation resuits.

P
vertex k, k k A 10° Cc 10 D 10* |E 10?
number
1 13.2 1.18 10253 | 0.631 0.854 0.460 0.151
2 13.2 1.18 | 0315 | 0.606 0.881 0.431 0.178
3 132 - | 1.72 | 0253 | 0577 0415 0.495 0.161
4 132 | 172 {0315 | 0551 0.436 0464 |0.189
5 15.5 1.18 10253 | 0.630 0.850 0.460 0.151
6 15.5 1.18 | 0315 | 0.606 0.881 0.431 0178
7 15.5 1.72 10253.10577. _ .| 0415 1 0.495 0.161
8 15.5 1.72 | 0315 | 0.551 0.436 0.464 0.189
9 14.7 1.53 | 0294 | 0573 0.544 0.466 0.177
Table 2. Charecteristics of raw materiai
x, light 71.9;72.2;
scattering { 15.0; 0.3
% 63.2; 63.8;
brightnes 1.1;00
X 10.8; 11.0;
pH 0.6; 0.0
Table3. Examples of the results of simulation
1 ‘F—
X % X X » ‘Y; ¥
light brightness | pH HO | pH rightaess | metal ions
scattering
71.90 63.20 10.80 30 |875 {7432 6.87*10
Table 4. Fuzzy output parameters of pulp
M
Y. 0 8.50; 8.53
pH 1 |752;7.69
{, 0 68.77:69.7
rightness | 1 74.54;75.8
y, 10° 0 5.12;6.48
metal ions { 1 5.49;5.50
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SERIAL ENGINEERING

[~ L ‘
Design Review Produce
quality
? safety
cost
. operability -
CONCURRENT ENGINEERING ’
quality Design .
? safety Produce
cost - Review
- operability

Fig 1. Comparison of serial and concurrent engineering
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y1',=f(c1)... Y4='(c4)

Y, = (mnt(c, ), max(cy)

Fig 3. Vemex method
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Abstract. In many applied problems (geophysics, medicine, astronomy, etc) we cannot directly
measure the values z(¢) of the desired physical quantity z in different moments of time, so we
measure some related quantity y(2), and then we try to reconstruct the desired values z(.). This
problem is often ill-posed in the sense that two essentially different functions z(t) are consistent with
the same measurement results. So, in order to get a reasonable reconstruction, we must have some
additional prior information about the desired function z(t). Methods that use this information to
choose z(t) from the set of all possible solutions are called regularization methods.

In some cases, we know the statistical characteristics both of z(¢) and of the measurement
errors, so we can apply statistical filtering methods (well-developed since the invention of a Wiener
filter). In some situations, we know the properties of the desired process, e.g., we know that
the derivative of z(t) is limited by some number A, etc. In this case, we can apply standard
regularization techniques (e.g., Tikhonov’s regularization).

In many cases, however, we have only uncertain knowledge about the values of z(t), about
the rate with which the values of z(t) can change, and about the measurement errors. In these
cases, usually one of the existing regularization methods is applied. There exist several heuristics
that choose such a method. The problem with these heuristics is that they often lead to choosing
different methods, and these methcds lead to different functions z(t). Therefore, the results z(t)
of applying these heuristic methods are often uni:liable.

We show that if we use fuzzy logic to describe this uncertainty, then we automatically arrive
at a unique regularization method, whose parameters are uniquely determined by the experts
knowledge. Although we start with the fuzzy description, but the resulting regularization turns
out to be quite crisp.

1. INTRODUCTION

What is an inverse problem ([TA77], [I83], [G84], [I86], {I86a], {LRS86], [CB86]). In many
applied problems (geophysics, medicine, astronomy, etc) we cannot directly measure the values z(t)
of the desired physical quantity z in different moments c © time, so we measure some related quantity
y(t), and then try to reconstruct the desired values z(t). For example, in case the dependency
between z(t) and y(t) is linear, we arrive at a problem of reconstructing z(t) from the equation
¥(t) = [k(t,8)z(s)ds + n(t), where k(1,s) is an approximately known function, and n(t) denote
the (unknown) errors of measuring y(t). These problems are called inverse problems.

Another example of inverse problems is image reconstruction from a noisy raw data.

Why inverse problems are so difficult to solve? These problems are often ill-posed in the
sense that two essentially different functions z(t) are consistent with the same observations y(t).
For example, since all the measurement devices are inertial and thus suppress the high frequencies,
the functions z(t) and z(t) + sin(wt), where w is sufficiently big, lead to almost similar values of
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y(t). So, in order to get meaningful results, we must scmehow choose from all possible solutions
z(2) (i.e., from all the functions that are consistent with the measurement results) a one that is
the most reasonable, the most regular (in some sense). A process of choosiag such a function is
therefore called a regularization [TA77], [183], [G84], [186], [I86a], [LRSS6].

Inverse problems are extremely important for space exploration. If we are analyzing
familiar processes, then we usually know (more or less) how the function z(t) looks like. For
example, we can know that z(t) is a linear function z(t) = C; + Coz, or a sine function z(t) =
Cysin(Cat + C3), etc. In mathematical terms, we know that z(t) = f(t,Cy, ..., Cx), where f is
a known expression, and the only problem is to determine the coefficients C;. This is how, for
example, the orbits of planets, satellites, comets, etc., are computed: the general shape of an
orbit is known from Newton’s theory, so we only have to estimate.the parameters-of a specific
orbit. In such cases, the existence of several other functions z(t) that are consistent with the same
observations, is not a big problem, because we choose only the functions z(t) that are expressed by
the formula f(t,C,,...,Ck).

In space exploration one of the main objectives (and the main challenges) is to analyze new
phenomena, new effects, qualitatively new processes, and in these cases no prior expression f is
known.

How these problems are traditionally solved? If we know the statistical characteristics
of z(t) and statistical characteristics of the meas:rement errors n(t), then we can formulate the
problem of choosing the maximally probable z(t) and end up with one of the methods of statisticai
regularization, or filtering (Wiener filter is one of the examples of this approach).

If we do not have this statistical information, but we know, e.g., that the average rate of change-

of z(t) is smaller than some constant A (i.e., ‘/ J2(1)? dt < A), then we can apply regularization
methods proposed by A. N. Tikhonov and others [TA77], [G84], [LRS86).

In particular, one of the most widely used (and most efficient) regularization techniques consists
of choosing among all the z(t) that are consistent with given observations, a function z(t) for which
the so-called Tikhonov functional (or Tikhonov stabilizer)

J(p) = ao [((1))* dt + a1 [(2(t))* dt + a2 [(zP(1)Pdt + ... + ax [(z V)2 at
takes the smallest possible value, where a; are non-negative real numbers, a; > 0, k 2> 1,and z()(1)
denotes i—th derivative of z(1).

For iinage reconstruction problems, when instead of a function z(t) of one variable ¢ we have a
function I(z,y) of two coordinates (that expresses brightness in a point (z, y)), a similar functionai
that involves partial derivatives can be used.

If no such information is available, it is usually recommended to use Tikhonov's (or alternative)
regularization techniques that correspond to some values of a;. Several semi-heuristic rules of
choosing these parameters a; are known. The problem with these choices is that different rules
sometimes lead to drastically different results, and therefore tl.ese rosults are unreliable. '

Usually experts possess some uncertain knowledge. The whole situation seems hopeless.
but it is not. Yes, in new fields we do not have precise knowledge of what is going on, but we may
be able to make some uncertain predictions. For example, if we want to know hcw the temperature
on a planet changes with time ¢, then the experts can tell that most likely, z(t) is limited by some
value M, and that the rate £(t) with which the temperature chang s, is typically (or “most likely,”.
etc) limited by some value A, etc. We can also have some expert knowledge about the error, with
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which we measure y(t), so the resulting expert’s knowledge about the value of y(t) in some point ¢
lcoks like “the difference between the measured value y(t) and the actual value Y (t) is most likely,
not bigger than 6” (where 6 is a positive real number given by an expest).

The importance of this information is stressed in {B92].

What we are planning to do. In the present paper we show that if we use fuzzy logic to describe
this uncertainty, then we automatically arrive at a unique regularization method, whose parameters
are uniquely determined by the experts knowledge. Moreover, although we start with the fuzzy
description, but the resulting regularization turns out to be quite crisp.

In Section 2 we will discuss briefly how to choose an appropriate representation of the experts
uncertainty, in Section 3 we use the resulting representations to solve the inverse problems.

2. PRELIMINARY DISCUSSION:
HOW TO DESCRIBE RELATED UNCERTAINTY

What we have to describe. We want to use fuzzy logic to describe this kind of uncertainty. So
we must do the following:
e find appropriate fuzzy representations of the experts statements of the type “most likely, X is
< M”, or “most likely, | X — a| £ 67, where X is unknown, and M, a,é are known values;
o choose a way to combine the resulting fuzzy statements into a membership function for different
z(t);
e transform this fuzzy description of z(t) into a single function z(t) that will be produced as a
solution of the inverse problem, i.e., choose an appropriate defuzzification.

In the present Section we will describe how to make all three choices. Actually we will start
with choosing an appropriate combination rule, then we will choose an appropriate membership
function, and then it will turn out that defuzzification is trivial.

How to choose an aggregation function. In general, our uncertain knowledge about the
unknown function z(t) consists of the statements of the following types: “most likely, [z(t)| < M ",
“most likely, |2()| < A”, “most likely, |y(t) = [ k(t,8)z(s)ds} < 8", etc. Fach statement is fuzzy
in the sense that for an arbitrary function z(t) we are not 100% sure whether this statement is
true for this function or not. The general idea of fuzzy logic is to describe this uncertainty by a
membership function, i.e., by a mapping that assigns to every z(t) a number from the interval [0,1],
that describes to what extent we believe that this statement is true.

Suppose that we have already decided how to express each of previous statements in terms
of membership functions. So we get a differen. membership function for each moment of time
¢ and for each statement. We must now generate a membership function that describes all our

" knowledge, i.e., that describes the fact that the first statement is true, and the second statement is

true, etc. The total knowledge is obtained by applying “and” to all the statements, and therefore
the resulting membership function must be obtained by applying one of the operations &:00,1) x
[0,1] — [0, 1] that express “and” to all the correspondent membership functions pilt): p(z(t)) =
pa(z(t))&pa(z(t))&...

Experimental results given in [HC76], [077), and [278], show that among all possible “and”-
operations a,b — min(a,b) and a,b — ab are the best fit for human reasoning. The min operation
does not seem to be adequate for our purposes, because if we use min, thep, e.g., the degree, to
which a function z(t) satisfies the condition “most likely, |z(2)] < M™, is equal to the minimal of
the degrees of the corresponding statements. This minimum is attained when the value of |z(t)] is
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the biggest possible. Therefore, the function z(t) that is everywhere equal to 2M, gets the same
degree of consistency with the above-given rule, as the function z;(t) that is almost everywhere
equal to 0, and is attaining the value 2M only on a small interval. Intuitively, however, for the first
function z1(t) (for which the inequality is always false), our degree of belief that it satisfies this
condition is practically 0, while for the second function 79(t), for which this inequality is almost
everywhere true, our degree of belief must be close to 1. So using min in our problem is inconsistent
with our intuition, and therefore we must use the product for &.

Comment. Other arguments for choosing different & operations are given in [K83), [KR86}, [K87],
(KK M88], [K89], [K89a], [K90], (KK90], [KL90), (KQL91], [KQLFLKBR92].

What membership functions to choose? We want to describe the statements of the type
“most likely, | X — a} < 8", where X is an unknown {z(1), (1), or.y(t)).and a,8 are known values
(for example, § = M and @ = 0). So we must describe, to what extent any given value z satisfies
this condition.

Evidently, z satisfies the inequality |z —a| < & if and only if the value y = (z - a)/4 satisfies the
inequality |y| < 1. Therefore, it is natural to assume that the statement “most likely, |z — a| < 8"
has the same degree of belief as the statement “most likely, jy| < 17, where y = (z - a)/é. So, if we
will be able to describe a membership function u(y) that corresponds to the statement “most likely,
lyl €17, then we will be able to describe our degree of belief py(z) that z satisfies the condition
“most likely, | X —a} < 6” as u((z — a)b). So the main problem is to find an appropriate function
u(z).

In the present paper we use Gaussian membership functions u(z) = exp(—Pz?) for some g > 0.
Therefore, the statement “most likely, | X — a| < 6" will be described by a membership function

m(z) = ezp(~P(z - a)*/6%). :

Gaussian membership functions are widely used in fuzzy systems and fuzzy control (see, e.g.,
(K75), (BCDMMMS85], [Y1S85], [KM87, Ch. 5], etc.), and there are several theoretical explanations
why they are so successful: in [KR86] and in Section 8 of [KQLFLKBR92] we prove that Gaussian

functions are optimal (in some reasonable sense), and in [KQR92} we describe reasonable axioms '

that uniquely determine Gaussian membership functions.

A remark about defuzzification. Suppose that we have determined the membership functions
pi(z(t)), that correspond to different statements about the unknown process z(t). Then the result-
ing membership function p(z(2)) is obtained by multiplying the functions p;(z(t)) that correspond
to these statements.

All the values of y; are < 1. So, if we multiply many such values, we end up with very small
numbers. E.g., if we have 10 experts who all assign the truth value 0.9 to some event, the resulting
estimate is 0.91° = 0.3. Thus, the fact that for some process z(t) the membership value u{z(t)) is
small, does not necessarily mean that this particular dependency z(t) is hardly possible. What is
meaningful is not the absolute, but the relative value of u(z(t)): if u(z()) € #(y(t)), then it does
mean that, according or our knowledge, z(t) is much less probable than y(1).

To make these comparisons easier, L. Zadeh proposed to use normalization, i.e., turn from

u(z(t)) to p'(z(t)) = Nu(z(t)), where a normalizer N is chosen in such a way that the maximal
value of p/(z(t)) is equal to 1 (i.e., N = 1/(maz u(z(1)))).

Comment. Theoretical explanations of this choice of a normalization are given in [KQLFLKBR92]
(in the framework of a general mathematical foundation scheme for fuzzy logic).
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3. FUZZY DESCRIPTION OF RELEVANT EXPERTS KNOWLEDGE
AND RESULTING REGULARIZATION

Let’s first list the possible experts statements.

1) Usually experts can give the approximate range of the process z(t), i.e., they can give a number
M for which “most likely, for every t the value of |z{t)] is limited by M.

2) Usually they can also give some approximate bounds for the rate, with which the values of
z(t) can change, i.e., they can give a number A, for which “most likely, for every 2, the value
of |%(2)] is limited by A™.

3) Sometimes, the experts’ knowledge and/or intuition can also prompt the approximate bounds
for the second time derivative of the process (acceleration), and bounds for some higher deriva-
tives. For each of these derivatives, an expert gives a value A; and states that “most likely,
for every t, the value of |z()(t)| is limited by A" (here z(?)(t) denoted i—th derivative).

4) Experts can also give some information about the possible measurement errors, i.e., about the
values n(t) = y(t)— [ k(t, s)z(s) ds, where y(t) are the measured values. In this case, an expert
gives a value §, and states that “most likely, for every ¢, the value of |n(t)| is limited by §.”

In addition to that, we have some measurement results y(t), and these measurement results
determine a set X of all the functions that are consistent with them. For example, if we know the
maximal possible value ¢ of a measurement error n(t), then X consists of all the functions z(t) that
satisfy the inequality |y(t) — [ k(t,8)z(s)ds] < ¢ for all &. :

We want to represent the expert knowledge in terms of a membership function that is defined
on this set X. :

We cannot directly translate these statements into membership functions, so we need
an additional approximation process. Each of these statements refers not to a single value of
some variable, but to infinitely many values, namely, to the values of z(t) for all possible moments
of time t. So, if we write down all the resulting elementary statements, we will end up with in-
finitely many such statzments. So, to get a membership function that coresponds to the resulting
knowledge, we must apply an “and”-operator to infinitely many membership functions, that corre-
spond to infinitely many elementary statements. But we know only how to apply “and”-operator
to finitely many functions.

In order to cover the infinite case, we will apply the usual mathematical method of dealing
with infinities: we will first consider the case, when the experts statements are applicable only to
finitely many points 1y, ...,¢s, and then tend n to infinity in such a way that in the limit these
points ¢; are everywhere dense. One of the natural possibilities to do that is to choose t; = fp + th,

~ where i > 0, and then take ty — ~00, A — 0, and n — oo in such a way that ¢, = tg + nh — +o0.

The resulting membership function: derivation. Let us apply this procedure and compute
the resulting membership function. The readers who are interested only in the final result can skip
this subsection.

Let’s first consider the case, when the only experts knowledge consists of the bounds M and A
on |z()} and |2(t)}. Then for each ¢ the corresponding membership functions are exp(—3{z(t)}? /M?)
and ezp(—pPlz(2)[*/A?). Therefore, if we take into consideration these statements for t = 1, ..., 15,
t; = tg + ih, the resulting membership function will be equal to the product of these membership
functions, i.e., will be equal to the following expression
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#(2(1)) = TTicy exp(=Blz(t:)/M?) x [T7., exp(=Blz(:)[/ A).

Comment. We are restricted to the set X of all functions z(t) that are consistent with the measure-

ment results. Therefore, the above xpression for #(z(t)) is valid only for such functions z(t). All
functions z(t) that are not consistent with the measurement results are impossible, i.e., if z(t) ¢ X,
then u(z(t)) = 0.

Since exp(a) X exp(b) = ezp(a + b), we can simplify the expression for u(z(t)) as follows:

#(2(t) = ezp(—(B/M?) TL, la(t:) ~ (B/A%) %, I2(t)]?).

What happens when n — 00? If we multiply the sum g le@)P by b = tiy1 ~ L, we get an
integral sum for the integral [ |z(t)|*dt. These integral sums tend to this integral, when h — 0.
Hence, for small A, this sum is approximately equal to h=! [ |z(t)] dt. Therefore, the membership
function is approximately equal to the following expression: T

#a(2(t)) ~ exp(—(£/h)I(z(2))),

where '
J(2(t)) = M2 [|z(t)2dt + A2 [ |2(t)]? dt.

When & — 0, (8/h)J(z(t)) — o0, and, therefore, up(z(t)) =~ ezp(—(B/h)J(z(t))) — 0. Therefore,
if we apply a transition to a limit, we end up with a meaningless expression mz(t))y=0.

In order to get a reasonable limit membership function u(z(t)), we must apply the nor-
malization procedure before going to a limit. In other words, we must transform #a(z(t)) into
#i(2(1)) = Npn(2(t)), where N = 1/(maz e xpa(2(t))).

Since px(2(t)) = exp(—(B/h)J(z(t))), the value of #a(z(t)) is the biggest when the value
of J(z(t)) is the smallest possible. So, if we denote by m the smallest possible value of the
functional J(z(t)) on X, we can conclude that maz (nexpn(z(t)) = ezp(—~(B/h)m). Therefore,
N = 1/maz = ezp((8/h)m), and w}(2(8) = Npn(z(2)) = ezp(~(BIRY I(a(t)) - m)).

Now we are ready to describe the membership function u(z(t)) = limy_ou}, (z(2)) that cor-
responds to the limit A — 0. If J(z(t)) = m, then #1(z(t)) = 1, and therefore pzt) =1 1f
z(t) € X and J(z(t)) # m, then, since m is a minimum of J(z(1)), we get J(z(t)) > m, therefore
(B/R)(J(z(t)) — m) — oo, and hence, pr(z(t)) = 0as h — 0.

As a result, we get a crisp membership function that corresponds to Tikhonov’s reg-
ularization. If J(z(2)) # m, we have #(z(t)) = 0. So, although we started with fuzzy statements
and fuzzy membership functions, the resulting membership function is crisp: it is equal either to 1
or to 0 depending on whether the functional J(z(t)) attains its minimum at z( t) or not. Hence, in
this case, we do not need any defuzzification procedure: we just pick a function z(t) from X, for
which J(z(t)) attains its minimal value.

What if the experts can also give some bounds on the second and higher derivatives

of the process z(t). In case an expert gives estimates A, for i—th derivative and/or a bound §

for the measurement error, the resulting membership function is the same, with the only difference
that additional terms are added to J(z(t)): A2 (=) dt in case of i~th derivative, and
672 [(y(t) = [ %(t,8)z(s)ds)? dt

in case of an error bound.
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How to solve inverse problems: resulting procedure. As a result, we arrive at the following
methods of solving inverse problems:

1) ask an expert to give approximate bounds M for |z(t)| and A for |#(t)|; if possible, get also his
bounds A; for i—th derivative |z{¥)(t)], and § for the measurement error |y(t)~ [ k(t, s)z(s) ds|;

2) from all the functions that are consistent with the measurement resuits, choose a function z(t)
for which the functional J(z(t)) attains the smallest possible value. In case the expert gives
only the estimates M and A, J(z(t)) = Jo(z()) + J1(z(t)), where Jo(z(t)) = M2 [ |z(t)}? dt
and Ji(z(t)) = A~? f{2(t)|? dt. In case he gives bounds for i—th derivative and/or for errors,
we must take J(z(2)) = 3o; Ji(2(t)) + Je(z(2)), where for i > 1 Ji(z(2)) = A]? f(2)(¢))* dt
and Jo(z(t)) = 672 [(y(t) — [ k(2,8)z(s) ds)dt.

We can use ready-made software. The resulting method turns out to be a particular case of
the Tikhonov’s regularization scheme. Therefore we do not need to design any new software: we
can use the techniques, algorithms, and programs, that have already been developed for Tikhonov’s
regularization.

If the only thing we have done is justification of a well-known method, then what’s
the buzz? Our proposal to use Tikhonov’s method has two advantages over the usual heuristic
suggestion to use it:

i) Tikhonov’s method is semi-heuristic, while we derived our method from the fuzzy formalism;

it) we do not need any heuristic ruie of choosing a;, because we have explicit expressions for these
parameters in terms of experts’ bounds.

Therefore, we avoid the problem of Tikhonov’s regularization that different heuristic rules lead
to different values of a; and, therefore, to different solutions z(t).

4. CONCLUSIONS

Suppose that we must reconstruct z(t) from the measurement results y(t), and the problem
is ill-posed in the sense that drastically different functions z(t) are consistent with the same mea-
surement results. Such problems are very frequent in geophysics, astronomy, image processing,
etc. Suppose also that the only additional information that we have about the process z(t) is the
experts estimates M and A for which the experts say that “most likely, for every ¢ the value of
|z(2)] is limited by M,” and “most likely, for every ¢, the value of |2(t)] is limited by A”, where
#(t) denotes the rate with which z(t) changes (i.e., in mathematical terms, time derivative of z(t)).

Then fuc~y representation of this uncertainty leads to the following method of using this
experts’ knowledge: from all the functions that are consistent with the measurement results, we
choose a function z(t), for which the functional J(z(t)) takes the minimal possible value, where
J(z(t)) = M2 [ |z(t)|?dt + A2 [|2(1)|* dt.

Similar functionals can be described for the cases, when bounds for higher derivatives and/or
measurement errors are known.

‘The resulting method turns out to coincide with a particular case of the general Tikhonov's

regularization approach. This approach has already been implemented in software, and it has been
successfully tested on numerous real-life ill-posed prqblems.
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The advantage of our approach is that we solve two main problems of Tikhonov’s regularization:
e we provide a justification its formulas, and o
e we provide a method for choosing the parameters of Tikhonov’s regularization.
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[ [0 QUANTIFICATION OF HUMAN RESPONSES
" RC. Steinlage*, T.E. Gantner”, P.Y.W. Lim**

i Human perception is a complex phenomenon which is difficult to
quantify with instruments. For this reason, panels of several or many people are often
used to elicit and aggregate subjective judgments. Print quality, taste, smell, sound
quality of a stereo system, softness, and grading Olympic divers and skaters are some

examples of situations where subjective measurements or judgments are paramount. We- -

usually express what is in our mind through language as a medium but languages are
limited in available choices of vocabularies, and as a result our verbalizations are only
approximate expressions of what we really have in mind. For lack of better methods to
quantify subjective judgments, it is customary to set up a numerical scale such as 1, 2,
3,4,50r1,2,3, ..., 9, 10 for characterizing human responses and subjective judgments
with no valid justification except that these scales are easy to understand and
convenient to use. But these numerical scales are arbitrary simplifications of the
complex human mind; the human mind is not restricted to such simple numerical
variations. In fact, human responses and subjective judgments are psychophysical
phenomena that are fuzzy entities and therefore difficult to handle by conventional
mathematics and probability theory. The fuzzy mathematical approach provides a more
realistic insight into understanding and quantifying human responses. This paper
presents a method for quantifying human responses and subjective judgments without
assuming a pattern of linear or numerical variation for human responses. In particular,
Mgggg_tiﬁcation and evaluation of linguistic judgments was investigated.

The method used to code responses obtained from panelists is
especially important when one wishes to make decisions concerning properties or events
which are not objectively quantifiable but which must be evaluated subjectively. The
problem of coding such responses has been addressed from many directions. In this
paper we propose a technique, based in fuzzy mathematics, for quantifying and
evaluating subjective responses and then we test our technique in situations where the
properties are also objectively measurable. By testing our technique in objective
situations, we hope to lend credibility to its use in purely subjective situations. The
technique we describe is a refinement of techniques originally proposed by Saaty {4-8].

Saaty [4-8] proposes using five adjectives as “response words” ir subjective panel
tests. These words indicate that two samples are indistinguishable with respect to a
given property or that the difference between them is slight, moderate, significant, or
extreme (I::' absolute). Of course, panelists are permitted to hnedge their bets and cast
their ballots between two such judgments.

Thus Saaty is proposing a 9 point scale for linguistic or subjective judgments as
illustrated below. The illustration is stated in terms of physical weight although the
particular property is irrelevant. .
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- A and B are equally heavy
- A is slightly heavier than B - e .
A is moderately heavier than B R

- A is significantly heavier than B

OO~ OULE W) -
¢

- A is extremely heavier than B

The integers 2, 4, 6, 8 iepresent compromise judgments between two of the
above odd numbered positions. As Saaty states, this is a good scale in that it provides
enough shades of meaning without expecting a panelist to be scrupulous.

After obtaining panel data, the next problem is the analysis of this data. Aside
from the usual statistical analysis, a technique that has been shown to be successful in
fuzzy or subjective situations is to find the dominant eigenvalue and associated
eigenvector for the reciprocal matrix of paired comparisons. This analysis is based on
the work of Perron and Froebenius [1]. If n objects Ay, ... , Ay are being compared,
these are listed horizontally and vertically to indicate the rows and columns of a matrix
M. If A. is judged to be significantly heavier than A., then a 7 is placed in row i,

column j and 1/7 is placed in row j, column i : 3
1 i j n
1 T . =
i 7
N I
. L |

If our objective is to determine the respective weights of n objects, then the
resulting eigenvector should indicate the relative weights. If we have perfect
information (no judgments are necessary and responses are not restricted to integers and
their reciprocals) we could simply fill in the matrix using the ratio of the respective

weights: m;; = wi/wj. We then obtain a reciprocal matrix: my; = wj/wi = l/mij'
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M = 1 2 n
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It can be shown that A = n is the only non-zero eigenvalue for M and that W =
(Wq, - » Wp) is its associated eigenvector; the correct weight determination is indeed
obéa.ined as the eigenvector. This eigenvector is unique up to a scalar multiple.

If the experiment was needed, however, perfect information is not available at
the outset. But if the responses are a reasonable approximation to the reality of the
situation, then the responses will approximate those which would have been placed in
the “perfect information” matrix. Hence the eigenvalue should approximate n (the
number of samples) and the associated eigenvector should approximate the actual
distribution of the property (weight, etc.) among the samples. Thus the eigenvector not
only ranks the samples ordinally (indicates smallest, largest, etc.) but also gives a
cardinal ranking (indicates relative strengths or weights, etc.). In actuality A > n, the
associated eigenvector V = (Vy, ... » vy) is unique up to a multiplicative constaut, and
when normalized so that v !l- + vy =1, v, indicates the percentage of the total
{weight) possessed by object i. The eigenvalue A'is a measure of the consistency of the
responses given by the panelist. A good rule of thumb is that if A > n + 2, the panelist
has contradicted himself or herself so many times and/or so egregiously that his or her
responses should be ignored. On the other hand, if A is very close to n, the panelist was
very consistent (although not necessarily accurate or correct). In short, the eigenvalue
is a good flag to indicate errors in recording data; e.g., a number and its reciprocal may
be interchanged, The 1 to 9 scale does conform well to linguistic comparisons in the
sense that it allows one to discriminate simultaneously on 9 = 7 + 2 levels. This is the
maximum number in the range 7 + 2 of simultaneous comparisons that an individual
can keep in mind without becoming confused; see Miller (3]. If a scale much larger
than 9 is used, the differences in reciprocals become negligible and some discrimination
between samples in the resulting eigenvector will be lost. A collection of objects in
which the samples may be too widely diverse should be subjected to a hierarchical
analysis [4-8]. : .

However, our experience indicates that while the above 1 - 9 scale may be
approprizte for eliciting and coding human respouses, it is not always the proper scale
to be used in the ensuing matrix analysis. In fact, the scale used will be reflected in the
results. The largest number used is in essence the ratio between the strongest and
weakest (or heaviest and lightest, etc.) objects in the resulting eigenvector. Thus an




inappropriate numerical scale will lead to undesirable end effééts concerning the
extremes of the cbjects being compared. This end effect is extremely volatile when
computing percent error on the low end. Our experience indicates that a linear
rescaling of the 1 - 9 linguistic scale to a scale determined by the accepted or perceived
ratio of the two extreme objects in the given group significantly reduces this end-point
effect.

e: Consider 6 weights w; = 2, wy = 4, w3 = 6, wy = 8, wg = 10,
and wg = 12. The matrix Mg = [w;/w] = [mij] is the matrix of perfect information,
and the integer entries of this matrix ranige from’1 to 6. In this case, the weight ratios
Wolwy = Wyfwy = Welwg = 2all indicate that the numerator weight is twice that of
the denominatof, which is“quite different from the linguistic use of the number 2 in the
above 1 -9 scale. The linguistic 2 says two samples are almost indistinguishable. The
dominant eigenvalue of Mg is 6 and its unit eigenvector is Vg = (w f\:, ey Wef[W),
where w = wy + .. + Wg = 42. We linearly rescaled the integer entries in M. to =
1-9 scale to get a reciprocal matrix Mg, as well as to a 13 scale to get a reciprocal
matrix M,. The unit eigenvectors and Va,, respectively, corresponding to the
dominant eigenvalues of Mg and M4 generate weight vectors 42V, and 42V,. These are
displayed in the table below. In aﬁ cases the eigenvalue A was less than 6.005. These
low eigenvalues merely indicate consistency, not agreement with experimental
measurements.

PERFECT INFORMATION
VARIOUS SCALES

42V, 2V, 42V,
% error actual % error
wy 3.570 2
78.5% ~32.8%
wo 5.418 4 3.192
35.5% —-20.2%
w3 6.720 6 5.376
12.0% -10.4%
Wy 7.812 8 7.89
-2.4% - 1.3%
W5 18.778 10 10.626
-12.2% 6.3%
w6 9.702 | 112 13.566
-19.2% 13.1%
430
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In Mg, the 19 scale exceeds the actual maximum weight ratio wz/w, = 6. As
a result the ‘eigenvector scale overestimates the heavier weights and underestimates the
lighter weights. In Mg, the 1 -3 scale falls short of the maximum weight ratio we/w
= 6. As a result &e eigenvector scale underestimates the heavier weights’ an&
overestimates the lighter weights. The spread between the two extremes is too large
with a scale of 1-9 and too small with a scale of 1-3. However, all three scales
provide the proper ordinal ranking of the weights. -

As a practical test of our theory we duplicated Saaty’s weight test on five
dissimilar objects of various sizes, shapes, and weights:

1. Ski Boots 81b. 3 oz.
2. Radio 2 1b.13 oz.
3. Iron 31b. 4 oz,
4. Jug of Wax 7Lb. 9 oz.

5. Pile of Kindling 6 1b. 4 oz.

Pairwise comparisons of these objects were made using the linguistic 1 to 9 scale
and the corresponding reciprocal matrix was generated. The results as compiled below
are distorted significantly from the actual weight distribution. Nevertheless the
eigenvalue A = 5.30 is rather low. Again, this low eigenvalue indicates consistency of
the responses — not necessarily accuracy of the predictions. -

On the other hand if we observe that the maximum ratio is Boots/Radio =
8.1875/2.8125 = 29111 =~ 3, we see that a maximum ratio of 3 (as opposed to 9)
might have been better. Rescaling the original observations linearly to 1 -3 from 1 -9
changes the results considerably. These results too are tabulated below; they are seen
to be much more acceptable.

WEIGHT TEST

Scale 1 -9 Scale1-3
Computed Actual Computed
Weight Weight Weight
% error % error
wy 8.7 8.1875 7.58
6.4% ~-7.3%
Wo 0.84 2.8125 2.75
-70.1% -2.1%
w3 14 3.25 3.06
- 56.9% -5.8%
W4 11.79 7.56 8.47
56.0% 12.0%
w5 5.33 6.25 6.23
-14.7% -0.3%




Using the correct scale reduces the maximun relative error from 70% to 12%; the
error at the volatile low end was reduced from 70% to 2%. Note *hat the original 1 -9
responses were just rescaled to a 1 -3 scale. The experiment was not redone. Had the
original experiment been redone with a 1-2 limitation on responses, much of the “fine
tuning” of the responses would have been lost; i.e., not enough linguistic variation
would have been permitted.

An alternative to 1 -9 responses (or any numerical response for that matter) is
to use a bar graph in which the center position represents equality of the samples and
the ends represent extreme dominance of one sample over the other:

Al : : — B

A over B Equality B over A

Using such a bar graph, responses can be interpreted on any pumerical scale
desired. We used bar graphs of this type iu an experiment designed to test the ability
of panelists to ascertain smoll differences in samples when the total magnitude was also
small. In short, we wanted to test the applicability of this process to situations in
which minor differences must be determined; can the process be “fine tuned” to indicate
detailed differences as well as general relationships? Again, we tested the piocess in a
situation where the property in question could also be objectively measured. Without
such tests, the process would have little credibility in purely subjective situations. The
experiment and its results are described below.

An Experiment: The thickness of paper is called “celiper” in the paper industry.
Caliper is usually detengined under laboratory conditions using instruments capable of
accuracy to within 107 inches. Because of the non-uniformity of any given piece of
paper, the caliper is usually measured in several spots and an average of these is used. as
the caliper of that sample. Thus caliper is an imprecise (even fuzzy) measurement
made on a given sample of paper which is representative of the run of paper from which
the sample was obtained. Since fuzzy sets provide a framework in which one can study
subjective judgments, We attempted to determine how closely the determination of
caliper of paper, made by subjective decisions of panelists, compares with the
instrumental measurements of the same samples under laberatory couditions.

In all, 29 panelists participated in evaluating 6 paper samples. The papers were
chosen so that caliper was essentially the only difference between them. Also to prevent
other factors from influencing the results the samples were glued down to uniform metal
blocks. The paper was trimmed to within 1/4” of the edge of the block on all sides.
Thus “flexibility” for example could not affect the evaluation.

Interpreting the panel responses on the bar graphs in the traditional 1-9
linguistic scale gives the following results. The results presented are averages over 27
panelists (2 were eliminated from: cousideration because of high eigenvalues). Caliper is

given in 1/ 1000’s of an inch.
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CALIPER TEST
Scale1-9
Paper  Average Computed Relative - -
Sample Caliper Caliper Error
1. 3.26 1.80 -44.7%
2. 6.35 4.99 -21.4%
3. 5.63 4.03 -23.1%
4. 10.24 13.04 27.4%
5. 4.29 3.99 v 7.0%
6. 8.03 9.94 23.8%

Note that almost all errors are large but that the largest error occurs at the low
end and that the next largest error occurs at the high end. The sizes of these errors
would seem to severely limit the applicability of the process to situations in which such
delicate differences occur and are to be detected. On the other hand, the maximum
ratio in average measured calipers is 10.24/3.26 ~ 3.14. Reinterpreting the original
panel data on a 1-3.14 scale improves the results significantly. The results are
tabulated below. An extra column is included to indicate the variations in the several
caliper measurements taken to obtain the “Average Caliper” for the given paper sample.

- CALIPER TEST
Scale 1 -3.14
Inherent
Paper Average Computed Relative Variation
Sample Caliper Caliper Error in Sample
1. 3.26 3.09 -5.2% + 4.3%
2. 6.35 5.99 -5.7% + 8.7%
3. 5.63 5.17 -8.2% + 6.2%
4. 10.24 10.51 2.6% + 1.3%
5. 4.29 4.48 4.4% + 4.7%
6. 8.03 8.55 6.5% + 3.7%

By rescaling the interpretation from 1 - 9toal - 3.14 scale, the distortion at
the low and high ends has been removed. In samples 2 and 5, the error is no larger
than the variation inherent in the sample itself; there is thus effectively no error in our
computed caliper. In no case is the error more than double the variation in the sample.
We think this kind of accuracy obtained from subjective non-quantified judgments is
astounding. It should be pointed out that sample variation does seem to be related to
the resulting errors .: computed caliper. The lowest sample variation (1.3%)
corresponds to the lowest experimental error (2.6%). Thus it would seem that half the
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experimental error is attributable to variation in the samples themselves. The error
generated by the subjective evaluations and the subsequent computational process is no
greater than that which is contributed by variations within the samples.

We remind the reader again that we are not proposing that this process be used
to measure objectively quantifiable properties. Rather, we are testing our theories on
objectively quantifiable properties, such as weight and caliper, so as to lend credibility

to the process when it is used in situations which are primarily subjective.

. nent. The determination of print quality has been a subject
matter for which many sophisticated instrumental approaches have been developed, but
human perception is still used as an integral part of the final evaluation. In [2] non-
impact printer image qualities were studied using paired comparisons elicited from
panels. Linguistic expressions and graphic responses were both used for transcribing the
panel responses. The responses were analyzed using the techniques described in this
paper. The purpose of the cxperiment was to test the applicability of the process
outlined in this paper to situations in which minor differences must be determined. The
resulting eigenvalue indicated that the panelists were able to give consistent responses
in making the paired comparisons; panel fatigue and/or confusion was not a problem.
The eigenvector analysis of the panel respouses, when averaged, gave results consistent
with what one would expect from viewing the samples. Samples which were ranked as
being near in quality required higher levels of magnification before significant
differences were observed than did samples which were ranked as being far apart in
quality. While instrumental measurements made on greatly magnified images can
result in overly stringent purchasing requirements, panel testing brings the
determination of print quality closer to the practical marketing situation.

Summa-y and Conclusions. Many applications in commerce and industry
demand far greater relative accuracy than is sometimes evidenced in the use of the
paired comparison technique to elicit fuzzy properties. Early indications obtained in a
fuzzy analysis should in many cases be refined. For instance, the difference between a
1% and a 3% market share could mean a tripling of business volume for a small
contender. More precise results would be requested.

Many arguments can be given to justify the utility of a 1-9 linguistic scale for
subjective responses. However, we have found that it is not necessarily advisable to
continue to use the 1 -9 scale in the computationa! process which follows the subjective
evaluations. In fact, the choice of computational scale greatly influences the results at
the extremes - the low and high ends - with related distortions in between. In short,
the choice of computational wcale dictates (approximately) the ratio between the
extremes of the measured property in the given samples as generated by the
eigenvector. Too large a scale results in the extremes being separated too far; too small
a scale brings the extremes too close together.

Taking greater care in making the comparisons cannot correct for this distortion

if an inappropriate scale is chosen.  This distortion is inherent in the computational
process.




This observation has a theoretical basis as well. For each column of the matrix
(when normalized) is an approximation to the (normalized) dominant eigenvector.
Thus the maximum ratio in any column will approximate the maximum ratio in the
eigenvector. In the column corresponding to the lightest (thinnest, etc.) sample all
entries will be integers on a linguistic scale or at least greater than or equal to 1 on a
continuous (bar graph) scale. Thus the maximum ratio in this column -should- be
approximated by the ratio of the extremes in the resulting eigenvector. ~This
observation is also borne out in the examples and experiments described in the body of

this paper.

Thus in any panel test involving paired comparisons there are two distinct
problems :

1. Using an acceptable scale for the panel responses. Whether this scale be
linguistic, continuous or otherwise, it would seem that 9 levels on a scale of 1-9 is
perfectly acceptable. An exception to this rule is that if the samples are too diversz, a
hierarchical analysis would be in order.

9. The choice of computational scale should be treated as being independent of
the scale used by the panelists. If the results are to be realistic and if the accuracy is to
be “fine tuned”, the computational scale must be close to the actual ratio between the
properties in the extreme samples. This is not a trivial problem, however. If a fuzzy
analysis is indeed necessary, then presumably this ratio cannot he obtained objectively.

Nevertheless, since some kind of yardstick is probably desired, industry or
marketing experts could indicate that one or several scales may be “appropriate”. An
advantage of the bar graph approach is that it readily lends itself to arbitrary
computational scales. Thus results could quickly be processed for several scales and
comparisons made. Then other scales could be checked - all without requiring further
input from panels.

However, some outside judgments will be necessary in selecting a scale. For the
computed spread between the extreme samples is an increasing function of the scale.
There is no critical point or critical value which says that in trying several scales, we

assed through the correct scale. The only critical point occurs with the minimum scale
of 1 which pushes all data together and makes no distinctions whatsoever.

+ Department of Mathematics, University of Dayton, Dayton, Ohio
«+ Boise Cascade R&D, Portland, Oregon
(Now at the Fine Paper Division of Union Camp Corporation, Franklin, Virginia)
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Uncertainty in Dynamic Systems
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Abstract

The following point is stated throughout the paper: Dynamic systems are usually subject
to uncertainty, be it the unavoidable quantic uncertainty when working with sufficiently small
scales or when working in large scales uncertainty can be allowed by the researcher in order to
simplify the problem, or it can be introduced by non-linear interactions. Even though non-
quantic uncertainty can generally be dealt with by using the ordinary probability formalisms, it
can also be studied with the proposed non-scalar formalism. Thus, non-scalar uncertainty is a
more general theoretical framework giving more insight about. the nature of uncertainty and
providing a practical tool in those cases in which scalar uncertainty is not enough, such as when
studying highly non-linear dynamic systems. This paper’s specific contribution is the general
concept of non-scalar uncertzinty and a first proposal for a methodology. Applications should
be based upon this methodology. The advantage of this approach is to provide simpler
mathematical models for prediction of the system states.

Present conventional tools for dealing with uncertainty prove insufficient for an effective
description of some dynamic systems. The main limitations are overcome abandoning ordinary
scalar algebra in the real interval [0,1] in favor of a tensor field with a much richer structure
and generality. This approach gives insight into the interpretation of the Quantum Mechanics and
will have its most profund consequences in the fields of elementary particle physics and
nonlinear dynamic systems. Concepts like “interferring alternatives” and "discrete states” have
an elegant explanation in this framework in terms of properties of dynamic systems such as
strange attractors and chaos.

The tensor formalism proves specially useful to describe the mechanics of representing
dynamic systems with models that are closer to reality and have relatively much simpler
solutions. It was found to be wiser to get an approximate solution to an accurate model than to
get a precise solution to a model constrained by simplifying assumptions. Precision has a very
heavy cost in present physical models, but this formalism allows the trade between uncertainty
and simplicity. '

It was found that modeling reality sometimes requires that state transition probabilities

should be manipulated as nonscalar quantities, finding at the end that there is always a
transformation to get back to scalar probability.
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Non-scalar Uncertainty

Introduction

About 60 years ago, after strong experimental evidence in the field of elementdry particle
physics, it was realized that probability theory as defined by that time was insufficient to handle

the unavoidable uncertainty in the behavior of microscopic physical systems. As stated by the ~ -

late R.P. Feynmann “...the laws of probability which are conventionally applied are quite
satisfactory in analyzir e behavior of a roulette wheel but not the behavior of a single electron
or a photon of light.* - "Quantum Mechanics and Path Integrals®, P.P.Feynmann & A.R.
Hibbs, McGraw-Hill, 1965. As a result various formulations of theories generally known as
Quantum Electrodynamics and Quantum Mechanics were born. These theories have proven to
be enormously successful as predictive tools and are in this respect unchallenged to this day,
though they have originated much controversy by their philosophical implications. Nevertheless,
all of them overcome the limitations of probability to deal with the results of experiments. They
do so because they invariably recur to algebraic structures much richer than the real interval
[0,1]; all of them involve first working with complex or hypercomplex fields and
multidimensional structures and then prescribe a transformation that restates the predictions in
conventional probabilistic terms. It is not in the scope of this paper to state a formulation or
description of any of these theorics, for there are countless of them available in the subject’s
literature. They are mentioned as a monumental example of the potential of multidimensional
structures and complex fields in the treatment of uncertainty.

The higher dimensionality and more complex operations
involved in complex and hypercomplex fields are useful to
generate the predicted patterns in the probability distributions of

interferring alternatives. ’ [:< A

What are interferring alternatives can be illustrated by
Young’s experiment (Figure 1), which is in this description a
thought experiment that can be instrumented in more realistic .
settings. A source of particles (electrons or photons, whatever), Figure 1 Young’s Experimens
emits them toward a screen, but between the source and the
screen we place a barrier with two slits. If we make the beam so weak that it consists of a single
photon at a time, we could assume that a single particle would go through either slit and then
it would be recorded at the screen. After a great number of particles have made their way one
by one through the screen they would form a visible pattern on the surface which would
represent the relative frequency (probability) distribution of a particle coming from the source,
through the slits, reaching a certain point on the screen. This probability density function is
represented by the curve at the right of the screen in Figure 1 and is unexpected, since it has
many local maxima and minima as if it were recording the effects of waves instead of particles.

If we could know with certainty that electrons come through either slit say, by blocking
one of them, then we would record a probability density function more like the curve indicated
in Figure 2. A similar result would be found when the other slit is blocked (Figure 3). If both
distributions were independent from each other we would find that the probability density
function that would be the sum of the previous two ones, giving a bell shaped curve.



Non-scalar Uncenainty

Nevertheless, the observed frequency distribution is very
different from the expected one (Figure 4). This is what is meant
by saying that the alternatives inserfere, much in the way waves
D/ do, but the interference pattern is defined on the probability
‘ (frequency) distribution. Whenever two or more alternatives
cannot be resolved by experiment, they always interfere. The
difference between the observed and expected patterns is caused
by the fundamental uncertainty described by Heisenberg’s
Figure 2 Distribution of principle. Whenever we want to interact with the particles to find
Particles through one Slit.  out which way they came the interference pattern at the screen
is blurred. If we would like to .

determine the particle’s path by getting it to interact with a
photon or some other particle, then t;e disturbance produced by
the sensing particles would be unavoidably too big to find out
with precision where was that particle going, thus destroying the [:]\ /
interference pattern.

Figure 3 Distribution when

Dynamic Systems Subject to Uncertainty the other Slit is Closed.

The essence of dynamic
systems is time dependency. When observing microscopic
dynamic systems we can say that much of Heisenberg'’s

Exp.»

since most of the relevant variables are time dependent. In this
kind of dynamic systems it is not possible to say with arbitrary
precision that a given particle is in a certain well defined state at
any precise moment, nor is it possible to say that it has a defined
Figure 4 Observed V5. trajectory and there exist sets of time dependent variables whose
Expected Frequency Dist. precise value can not be known simultaneously, such as position

and momentum. A similar argument holds for any kind of

dynamic system subject to uncertainty, specially for non-linear

ones. This means that we are left with a system which can
assume a set of states which can be either well defined or fuzzy, but we do not know in what
state will the system be at a certain time.

Obs.

Because of this loss of information on time dependency we are forced to study dynamic
systems disregarding the time variable; i.e., we are compelled to make time independent
statements about the states of a system. This is just the kind of statement that a freauency
(probability) distribution is: What states can a dynamic system assume and how likely is it to
be in any of them given some determined boundary conditions. Because of uncertainty,
observing the system by means of an experimental setting means that we will not generally
observe the same cutcome for identical repetitions of the experiment. So, all we can do is repeat
experiments and measurements for a large number of times and then watch the relative frequency

439

unavoidable uncertainty can be focused on the time variable, -

¢ L0 -
oeal me

;‘:i. ¥

Ak

— il e :'._.';'::'b-._)d-—. PO S WPV
I

-
et e A= -



Non-scalar Uncertainty

of the outcomes. Theoretical statements can only be made in probabilistic terms and
confrontation with reality can only be made in terms of comparing predicted probabilities against
observed relative frequencies. S

The theory of dynamic systems shows that there are some states that can be called
~equilibria”, which means that once a system has reached one of them it tends to stay in it for
a long time. If a system tends to abandon an equilibrium state at the slightest perturbation then
this point is called "unstable”. Of course, if we observe just the opposite, i.e. the system tends
to stay in some state regardless the effect of small pertushations, then it is called a "stable
equilibrium”. Of course, things in reality are not always that simple for we can find some special

states around which the behavior of the system tends to wander. They are called strange .

astractors and can have a simple or very complex nature. The reader is referred to the vast
literature on the subject to extend and ciarify these concepts.

If a dynamic system subject to uncertainty has strange attractors, they wiil show up in
the frequency (probability) chart as a peak, band or concentration of points, since it will spend
a considerable part of the time on them. These peaks look very much like interference patterns
when the dynamic system is defined by non-linear functions.

This peint can be nicely illustrated with a very well known example, the Verhulst Process
(a population growth model, [Peitgen]). We make the following initial assumptions:

x, = Initial Population Size
x, = Population Size after n years
R = (xl"l-xk)

Xn

= Relative Increase per year
If this rate is constant (say 'r’), then the law is:
x,,; = fix) = (1+9x,

If R varies with population size, then R = r(1-x,), where r > 0 is the *growth parameter”.
Then,

x,, =f(x) =0 +r)x_-rx2

Then x, = 0 and x, = 1 are equilibrium points. Analysis ford < xp < < 1, r > 0 yields:

N4 S

© L e N —— i L Al S A e e

oo




e

Non-scalar Uncerainty
VERHULST PROCESS VERHULST PROCESS
r=18 r=18
o’ I
ar f
§ ]
o 05 |
Tine Fraquency
Hustr. 5 One Asntractor Nustr. 6 Interference Partern
VERHULST PROCESS VERHULST PROCESS
r=23 r=23
§ T ! Il
3 M*
* 0.4
1121 |
T Tm T [ L ;Fl 10 12 14 1

Ilustr. 7 Two Attractors

Tlustr. 8 Interference Pattern

VERHULST PROCESS

r=25

B
>l
)
w——n
-

VERHULST PROCESS

r=25

ol o
L 2

,,,,,,,, U — 3
Tine Frequency
Tlustr. 9 Four Attractors Ilustr. 10 Interference Pattern
441




Non-scalar Uncentainty
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Tustr. 11 Chaotic Behavior Hustr. 12 Interference Potterns in  the
Frequency Distribution

As the Frequency Maps show (Figures 6,8,10 & 12), there are “interference” patterns
apparent in the frequency distribution of states. As the growth parameter r increases the behavior
becomes chaotic, but the "interference” still shows up.

State Space

State Space can be regarded as the "arena” where dynamic sytems perform.and leave
their trails and is defined as the set of all possible states a certain dynamic system can attain.
The definition of state space presumes the definition of state variables and supports and their
value sets. Reaching this stage is equivalent to climbing the first rung in a ladder of
epistemologic levels [Klir 1, pp. 16, 33-64], defining a Source System; i.e., isolation of a
system from reality to the point where evevthing is ready to perform observations and to get
data.

Definition of state variables and their nature almost defines the nature of state space. It
only leaves now to define some other general properties of such a space -i.e., metrics,
continuity, compacity, discreteness, order, invariance requirements, etc.

There is no reason to suppose that any two dynamic systems should have the same state
space, not even two distinct Source System definitions from the same dynamiic system. This is
why we nezd to define the essential properties which a state space should have in order to reach
a meaningful methodology.

1.- State space is a metric space S=(X, §), where X is a set of elements (points)
and § is a distance function satisfying

a) ¥(x,y)=0 <=> x=y, X, y e X,

b) &(x,y) = &y,x), x,yeX,

c) 8&(x,2) < &x,y) + &(y,2), x,y,z¢X
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Cover Space

‘To ensure an adequate structure we regard the state space S as a subspace of another one
called C (Cover Space), which is linear, of the same dimensionality as S and has a scalar
product that agrees with the metric defined on S.

Quantic Uncertainty

Quantum Theory formulations can be made equivalent to some extent. Basically, we can
say that states of a system correspond to vectors in a specially defined Hilbert space [Dirac, p.
51] or to wave functions [Landau, p. 19). Linear operators defined on such spaces can be made
to correspond to dynamic variables. If such operators saiisfy some other requirements -beirg
Hermitian or self-conjugate- they can be made to correspond to physical "observables®, or
quantities that can be measured or observed. Furthermore, if they have eigenvalues and
eigenvectors, then they are real quantities and can be interpreted as the values assumed by the
dynamic variables associated to such operators when the system is in the state corresponding to
those vectors. States can now be "superposed” and probability distributions for states and values
can be obtained by first finding the square of the moduius of the associated vector or wave
function amplitude and then getting its square root.

Quantum phenomena are subject to an unavoidable and intrinsic kind of uncertainty
manifest at atomic scales, stated first by W. Heisenberg in the 1920°s. Such uncertainty is
responsible for the unexpected results in experiments such as Young’s -described previously in
this paper. It enters the formalisms where we would expect to find it; i.e., associated in some

way to the time variable, which is "transiated” to phase components of certain complex numbers.

In the limit case when Qurantum Mechanics approaches Classical Mechanics wave functions can

be seen to have terms of ihe form

%s
ae

In this limit case, phase is proportional ‘0 S, the mechanical action of a system. But h (Planck’s
constant) implies meaningful contriputions (ones whic!: do not cancel out) only at the microworld
level scales. Thus, quantum mechanics formalisms introduce the effects of this unavoidable
uncertainty into the phase component of a complex quantity. This allows for addition of these
complex quantities over *all possible paths” in transition from one state o another, where paths
which are very close to each other contribute constructively to the final amplitude, whereas
unlikely paths which require relatively much longer times, tending to cancel their contributions
out. This is R. Feynmann’s approach [Feynmann 1, pp. 31-38). It should be stressed that these
processes operate on pnon-scalar elements all the time. It is only at the end when ore can
translate that complex amplitude to a probability via the scalar product operation, when finding
the modulus of the resulting amplitude vector. It is very important to realize that quantum
dynamic phenomena exhibiting interference gatterns in frequency or probability distributions
cannot be explained when manipulating uncertainty as a scalar quantity. Tne non-scalar nature
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of amplitudes is what allows constructive and destructive contributions when adding them up.
Thus, we may confidently state that uncertainty can be represented and manipulated as a non-
scalar quantity in a manner which is perfectly consistent with the conventional scalar probability
framework. This at least, is the case in one of the most successful scientific paradigms

Non-scalar Uncertainty

It should be realized that at least in Quantum Mechanical phenomena we find interference
patterns in probability or frequency distributions and these patterns ar¢ blurred out when
introducing the unavoidable uncertainty associated to observations at these scales. In the same
fashion, we find this kind of patterns in probability or frequency distributions in the macroscopic
world, specially when studying non-linear dynamic sysiems -C.f. the Verhulst Process described
before. And they can be blurred, too, but this time by observer-introduced uncertainty in the
‘measuring processes or by error propagation in calculations. :

It is not difficult to see that the additive and monotonic properties of all existing scalar
uncertainty frameworks (probability, possibility, etc.), make it impossible to model the
destructive contributions from events which are independent from the point of view regarding
their origin, but which can interact in strong ways (as is the case in non-linear phenomena),
resulting in an overall decrease in the probability of the union of both events. In other words,
interference patterns in probability distributions cannot be constructed from scalar probability
quantities by ordinary means.

One of the main claims of this paper is that there are many instances in ordinary practical
situations (especially when dealing with non-linear dynamic systems), where the following
requirements are due:

I) If A, are arbitrary events

PAV A, - UA) s PAY+-+PA) - f% P@A,M,) + izﬁ;' P4 M - -
I,O |¢ iy
+ (- Y P, N-4)

i‘-lzol.

1) This probability should also "fluctuate” along some support variables

P(AUAU-UA) = @yt 500) where ¢ is
an arbitrary function; the t/s are system variables

In practical situations this can be an empirical function sampled in some point/intervals of the
domain. Instances of it are interference patterns in the screen in Young's experiment, or the bar
graphs along the line graphs illustrating the Verhulst process previously described.
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In other words, @(t;, &, = £,) isa marginal probability density function which could
be obtained by the projection of an (m+1)-dimensional joint probability density function
&(t,,~>tpTyssT,) - This process can be called "collapsing” the support variables. This

“collapse” can be accomplished in many ways. By introducing the time variable and the effects
of uncertainty as phase components (temporarily adding one dimension) and then obtaining the
(squared) modulus by a scalar product (eliminating the time variable), as in quantum mechanics
formalisms. Or by first finding the joint probabitity density function empirically, introducing the
effects of uncertainty along with the time variable and then projecting over the state variables

(collapsing the support variables). This can be stated also as a contracted product if ¢ is
regarded as something like a tensor.

There are more reasons other than notation that make it convenient to consider these as
tensor quantities. Invariance with respect to base changes and basic operational needs make it
desirable to define them as tensor-like arrays. Uncertainty can then be viewed as a tensor-like
quantity of order zero (scalar), order 1, 2,..., etc.

If we define the state of a system under the very general frame described by G.J. Klir
[Klir 1], a general method to manage the effects of uncertainty can be described as first
concentrating these effects on the support variables by "coarsening" their resolution (reducing

the number of possible states of these variables and/or broadening the sampling intervals),

allowing a better determination of the true system variables and then collapsing all support
variables, leaving only support independent frequency or probability distribution functions. This
is only one way to take advantage of the uncertainty/simplicity trade pointed out by Klir [Klir

2}. A first contribution is that by regarding the system states and the frequency and probability

distributions as tensor-like quantities we get invariance to changes of base and some operational
advantages inherited from their new algebraic status. Thus, a state of the system, a vector whose
components are the values of the system variables suitably defined by a methodology like Klir's
[Klir 1}, becomes S;, a subspace of C,, the cover space, 1 Sism, where m is the number of
state variables excluding supports. The overall system behavior array, with as many dimensions
as system variables and supports, and ones in those elements which correspond to observed
overall states is

B, """ where 1, is the k™ support
‘

Here, xS; is the cartesian product of all the state variables’ value sefs. If 1, . isan all
i Ot 1Y

ones array, then the unnormalized frequency distribution function becomes
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5 _ Tyoita
this is the joint frequency distribution of all states. The dot indicates generalized matrix product
reducing over the repeated indexes. Of course, we can leave some supports in and some out,

obtaining the corresponding joint frequency distribution:

6‘-{'-' = B g =" 1
x5 xS;
! [

Tppr¥a il P
L4 r ,‘,S' L

where T,-%, means "include all indexes except the barred ones®.

To normalize the frequency distributions we divide each element by the scalar

‘gt ’:’:
v=¢r".1
x5, *1%
1

which is the totz] number of observed states, so

_ 14
¢"sl - :¢"‘SI
i

and we have

State Transition Uncertainties

" Transition from one state to another involves computing T(x,y), a function expressing I
the difficulty of going from state x 1o state y in terms of the time variable. Le., it must be '
proportional to the time taken to go from one state to the other. Then, we can define a two-
dimensional quantity

s et
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]
x@b) = 3 ae™

which represents the non-scalar likelihood to go from state a to state b. If time is not the only
support we wish to “collapse” then we need another component in this vectorial (complex or
hypercomplex) quantity. Ail quantities can be normalized so that we can get real probabilities
when obtaining their norms by means of scalar products. Finding function T means we know
the state transition structure of the system and we can relate it to time or other support variables.
An important comment about the state-transition likelihood is that the sum is computed along
all possible paths from a to b in such a way that those paths which differ very little from each
other have a more important contribution to the final non-scalar transition likelihood. So we can
say that there are preferred paths in any system.

It is convenient to express all these quantities with complex or hypercomplex numbers,
but it is clear that they can be represented in other algebraic settings.

In the simple example of Young's experiment, we can simplify T to be proportional to
the length of the paths followed by the particles, then it is evident that we should get an
interference pattern, since uncertainty can be referred to a distance (wavelength), too.

Conclusion

This paper contributed the concept of general non-linear uncertainty and a proposed
methodology to deal with it. The advantages of using it are a simplification of mathematical
models due to the controlled admission of uncertainty.

Dynamic Systems subject to uncertainty are cases where ordinary treatment and -alculus
of uncertainty is not enough to provide an adequate description of the system. Therefore, a more
general and powerful calculus is needed where scalar algebra in the real interval [0,1] is replaced
by a complex or hypercomplex field, which have a much richer structure and generality. This
calculus is homeomorphic to the methods of Quantum Mechanics and its study and development
throws much light on foundational issues of Quantum Mechanics and the now available
mathematical tools for managing uncertainty. Also, phenomena such as "interferring alternatives”
so basic to Quantum Mechanics find a very elegant explanation in this framework.
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Abstract

This paper presents an application comparison between two classes of fuzzy controllers; the
Clearness Transformation Fuzzy Controller (CTFC) and the CRI-based Fuszy Controller. The
comparison is performed by studying the application of the controllers to simulation exam-
ples of nonlinear systems. The CTFC is a new approach for the organization of fuzzy con-
trollers based on a cognitive model of parameter driven control, the notion of fuzzy patterns
to represent fuzzy knowledge and the Clearness Transformation Rule of Inference (CTRI) for
approximate reasoning. The approach facilitates the implementation of the basic modules of
the controller: the fuzzifier, defuzzifier and the control protocol in a rule-based architecture.
The CTRI scheme for approximate reasoning does not require the formation of fuzzy relation
matrices yielding improved performance in comparison with the traditional organization of
fuzzy controllers.

1 Fuzzy Logic Controllers

Fuzzy controllers have emerged to the engineering practice as a convenient tool for modelling the operator
knowlegde and experience of controlling complex processes and systems. The basic assumption behind their
dissimination is the ability to imitate the approximate reasoning mechanisms that the human operator ap-
plies to make decisions in complex and vague situations. The great works of L.A. Zadeh [5, 6, 7, 8] on fuzzy
reasoning has opened a new avenue for artificial approximate reasoning which is required to intellectualize
machine decisions. The compositional rule of inference (CRI) which Zadeh introduced as a tool for approx-
imate reasoning [6] has been successfully applied for the synthesis of linguistic control protacols of skilled
operator, thereby making the design of fuzzy logic controllers possible.

However, no systematic approach exists for the design of fuzzy controllers. The main drawback seems to
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lie in the application of the CRI scheme which requires the formulation of fuzzy relation matrices and the
performing of the Max-Min operations associated with them. For complex processes these matrices are
multidimensional and the computaion time required to perform the Max-Min operations can go beyond
real-time problem solving and control requirements. =

Mentalogic Systems Inc. developed a new approach for the design of fuzzy controllers based on the operator
cognitive model of fuzzy control [4], and using a new approximate reasoning scheme that requires niether
the fuzzy relation matrices nor the Max-Min operations associated with them. This scheme is called the
Clearness Transformation Rule of Inference (CTRI). It i a real-time approximate reasoning scheme in which
calculations are remarkably reduced in comparison with the CRI.

2 The Operation of Fuzzy Controllers

Fuzzy logic Controllers can be classified as control expert system capable of interpreting fuzzy statements
of human knowledge such "pressure is low” or "decrease steam flow slightly” etc. Using the CRI scheme
the control actions are deduced by the composition of fuzzy sets generated from the measured values of the
process variables (which are the input to the fuzzy controller), and the matrices of fuzzy rules (knowledge
on the input-output relationship) using the algebraic operations of the Max and Min. Fuzzy logic controllers
map input crisp data into fuzzy linguistic terms described by vectors (fuzzification), deduce the control
actions as fuzzy sets in the form of vectors also using the CRI, then translate these actions into crisp
data (defuzzification) whic is applied to regulate the controlled process. The overall operation of the fuzzy
controllers can be looked upon as numerical mapping procedure in which the compositions of fuzzy sets and

fuzzy rules are handled by the CRI while the controller provides numerical to linguistic (fuzzification) and

linguistic to numerical (defuzzification) converters to communicatz with the controlled process.

The CTFC fuzzy controller, however, is designed following the operator cognitive model of control 1, 2, 3}.
It has a modular structure in which each module performs a sct of distinct tasks. These tasks are the
fuzzification, rule selection, approximate reasoning, and defuzzification. Contrary to the CRI designs of
fuzzy controllers which are data processing devices, the CTFC is a cognitive pattern processing device which
recognizes fuzzy patterns and processes them to perform its decision making procedure. An overall account
of the CTFC controller is as follows. The controller receives crisp data which represents the states of the
process variables to be controlled. This data is channeled to the fuzzifier module which recognizes their fuzzy
patterns and their clearnese assessments in a cognative manner. The output of the fuzzifier is then used by
the Domain Knowledge-Base and approximate reasoning module for rule matching and clearness assessment
of the fuzzy patterns of the process situation. The defuzzifier then generates the fuzzy control actions which
are then translated to control commands in the form of crisp data =wkich is subsequently sent to regulate the
process.

In this controller a fuzzy pattern is defined by the triple { S, D, A }, where:

S - is the syntactical description of a fuzzy pattern. The logic of fuzzy predicates is utilized to describe the
fuzzy patterns of the real world situations. The notion of a fuzzy predicate as an atomic formula cf this logic
is considered an elementary fuzzy pattern. Complex fuzzy patterns are described as well formed formulae
(WFF) of this logic.

D - is the domain to which the fuzzy pattern is attached. This domain is composed of three attributes:
L.: is the domain variable.

X: is the space of all instantial models of L. .

oz is the set of allowable substitutions of the models of X for L; .

A - is the clearness assessment of a fuzzy pattern. This assessment employs a clearness measure built in the
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closed interval [0, 1] and divided into a finite number of clearness values (ax).

Two types of fuzzy patterns are employed by the CTFC controller; The static fuzzy patterns stored in the
knowledge-base of the controller, and the dynamic fuzzy patterns denoting the patterns detected in real
dynamic operations. The static and dynamic patterns have the same syntactical description but may differ
in their clearness evaluation in terms of strength” and ”weakness”. Global and local clearness assessments
are employed to describe the static and dynamic fuzzy patterns.

2.1 Process Representation

For the simulation examples presented in this paper, the variables which are used to represent the process are
the error in the output response and the change of this error. These variables are calculated as in equations
(1) and (2) below. The fuzzy predicates utilized for each variable as shown in figure (2). The same fuzzy
gets were used for the error, change of error and output. The control rules were different for each control
system.

Epresent = 1—ont (1)

€€ = €present — Eprevious (2)

where:

epresent = present error in the output response (for a unit step input).
€previous = previous error in the output response (for a unit step input).
ce = change of error in the process response.

The control rules which are used in the fuzzy controller are application dependent. To formulate the control
protocol we generaliy started with some approximate rules, then improved these rules in the direction which
improved the controller performance for obtaining better process output response.

For the two variables chosen, the error and the change of ertor, sixty four rules were sufficient to dw:ribe'

the control requirement for each simulation example.

2.2 Simulation Results

To compare the performance of the CTFC and CRI-based controllers, simulations were performed using
the same controlled systems under the same simulation conditions which are achieved by employing the
same fuzzy sets and control rules for both controllers. The systems chosen are nonlinear and representing
problematic systems from control point of view. Their synthesis reflects the capability and limitation of
each controller. The systems are single-input single-output closed loop nonlinear systems with single valued
and double valued nonlinearities. Two examples are presented here. The first example involves a single
valued nonlinearity, and the second example involves a double valued nonlinearity. Figure (1) shows a block
diagram of the closed loop system.

Example 1

In this example, the linear element is a second order system having a free integrator, and described by the
transfer function 95

s2 +0.3540.1

The nonlinear element is on-off plus dead-zone as shown in figure (3). The rules which are used for the
control of this system are shown in figure (5). The system response before and after compensation using both
the CTFC and CRl-based controllers is shown in figure (4). Both controllers were capable of eliminating

G(s) =
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the steady-state error caused by the dead-zone. However, the CT¥C controller response is mué:h smoother

than that of the CRI-based controller. The gain of the CRI-based had to be raised to obtain this response. -

Lowering the gain to that of the CTFC controller gave zero output response because the controller output
always fell within the dead-zone of the nonlinearity. The controller was not capable of emerging outside the
dead-zone. The CTFC was capable of addressing this system without requiring any outside interference or
help, reflecting better capability and hiher intelligence in handling difficult systems. Note the elimination of
steady state error despite the presence of the dead-zone.

Example 2

_ In this example, the linear element is a second order system having double integrator, and described by the
transfer function

G(s) = ;!2-

The nonlinear element is a backlash nonlinearity as shown in figure (3). The rules which are selected for
the fuzzy controller are displayed in figure (7). The system response before and after compensation using
both controllers is shown in figure (6). In this system the CTFC controller yielded excellent response while
the CRI-based controller failed completely in addressing this system. The superiority of the CTFC over the
CRI-based controller is cleatly reflected in this example. It is interesting to note that the nonlinear element
in this systems is a double valued nonlinearity.

3 Evaluation and Conclusions

A comparison simulation study has been conducted between the CTFC and the CRI-based fuzzy controllers
to illustrate the capabilties of each controller in addressing difficult control systems. The systems chosen for
the comparison study are nonlinear control systems. One system was chosen with single valued nonlinearity
and the other system with double valued nonlinearity. For the comparison to have a meaningful interpretation
the same fuzzy sets and control rules were employed in both controllers.

The results of the simulation show a clear advantage of the CTFC controller over the CRI-based controller.
The CTFC was capable of addressing both systems giving «mooth response for them, while the CRI-based
fuzzy controller gave a 25% overshoot in the first system and failed completely in addressing the second
system.

The simulation examples also reflect the capabilty of the CTFC fuzzy controller in addressing systems with
double valued nonlinear elements, and clearly illustrate the optimum solution embedied in this controller.
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1F AND THEN E=PZ | CE=NB CA =NZ
E=NB |CE=NBor E=PL |CE=NMor
CE =NM CA=NB CE=NS |CA= PZ
E=NB CE=NSor E = PZ CE = NZ CA = PS
CE = NZ or E=PZ |CE=PZor B
CE=PZor CE = PS or
CE =PS CA=NQ CE = PM or
E = NB CE=PMor CE=PB CA =PB
CE=PB__|CA=NZ E=PS | CE=NBor
E = NM CE = NBor CE = NM or
CE =NMor CE=NSor | .
1  lce=ns |cA=NB CE=Nz '
F=NM | CE=NZor F=P5 |CE=PZo
CE = PS CA = NS CE = P§
E = NM CE = P1 CA = NZ CE =
E=NM CE=PMor CE -
CE:PB CA:NM E=PM Cv
E=NS | CE = NB . ‘
CE = NM CA =NS
E=NS CE=NSor E =PM
CE =NZ CA = NB E=P
E = NS CE = PZ or E="
CE="PS CA=NS§
E=NS CE = PMor
CE =PB CA =NM 7
E=NZ | CE=NBor
CE = NM or
CE = NS CA = NS
E=NZ | CE=PZ CA =NZ
E = NZ CE = NZ CA =NB
E=NZ |[CE=PSor 1 E=¢t.
CE=PMor .
(CE=PB__[CA=NM L1

The abreviations used are:
E = Error

CE = Change in Error
A = Control Action
NB = Negative Big

NM = Negative Medium
NS = Negative

NZ = Negative Zero

PB = Positive Big

PM = Positive Medium
PS = Positive Small

PZ = Positive Zero

Figure 5. Control Rules for Example 1
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E=NB

CE = NBor
CE=NMor
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E=NB
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CA=NB
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E = NS
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CE =PMor
CE = PB

CA =NZ

CE=NBor
CE=NMor
CE = NS

CA =NB

E=NS

CE = PZ or
CE = PS

CE=NZor

CA =NS

E=NS

CE=PMor
CE =PB

CA = NM

E = NZ

E=NZ

CE = NBor
CE = NMor
CE = NSor
CE = NZ

CA = NB

E= NZ

CE = PZ

CA = NS

E = NZ

CE = PSor
CE = PMor

CE = PBor
CE = NB

| ca =]

I :

E=PZ | CE=Nr—

E=P2Z E = PZ
CE=PSo
CE = PMor

Figure 7. Control Rules for Example 2
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Possibilistic Measurement and Set Statistics*

Cliff Joslyn t ¢ {

Abstract

Set-based statistics are necessary to generate possibility distributions from measured data. Methods
by which phyacal measurements can generate statistical data on real intervals are considered, including
trials from multiple heterogeneous measurement devices rather than a single instrument at multiple times;
classes of consistent intervals constructed from statistical data around a common point focus or interval
core; and consonant intervals constructed from statistical data.

1 Introduction

My overall interest is to expand the applications of possibility theory beyond its traditional uses in the
engineering of human-created technological systems (e.g. knowledge-based control systems, artificial intelli-
gence and approXimate reasoning, etc.) to include the modeling of natural, complex systems. In order to
do this, it is necessary to extend the semantics of possibility beyond traditional interpretations based on the
uncertainty judgments of human subjects. Instead, a semantics of possibility that has meaning with respect
to natural systems is needed. ’

Existing empirical methods for deriving possibility distributions are frequency conversion methods, wkich
transform some measured probabilistic data into a possibilistic form [16]. Of course such transformations
must be used when only frequency data are available, but the resulting possibilistic representation is never
ultimately appropriate for data initially governed by a frequency distribution. When possibilistic data are
desired, it is Always preferable to obtain them in a form more directly similar to their possibilistic represen-
tation.

The additivity of frequency data results from the specificity of observations of singletons, or indeed
elemente of any disjoint class. Therefore, the first step towards possibilistic measurement is allowing for
the possibility of non-specific measurements, that is observations that are possibly non-disjoint. This is
essentially the concept of set statistics, originally advanced by Wang and Liu [17], and developed more by
Dubois and Prade [4, 6].

Frequency counts on subsets result in empirically derived random sets. In earlier papers, Joslyn [9, 10]
and Joslyn and Kilir [11] considered inethods for deriving a possibility distribution from a given empirical
random set. In this paper, raethods for the collectionof set statistics are developed, including direct collection
of interval data, and also generation of intervals from point-data streams.

2 Mathematical Preliminaries

We begin with the standard evidence and possibility theory [3, 14). Given a finite uaiverse @ = {wi},1 <
i < n, the set function m: 29 s [0, 1] is an evidence function (otherwise known as a basic assignment
or basic probahility assignment) when m(®) =0 and " 4ca(4) = 1. Denote a random set generated
from an evidence function as § = {{Aj,m;) :mj > 0}, where () is a vector, 4; C Q,m; = m(4;), and
1<j< N=|S|<2" 1. Denote the focal set as F = {A;j : m; > 0} with core C(¥) =5 Aj- The

*Prepared for the Conference of the North American Fuzzy Information Processing Society, December 1992, Puerto Vallarta.

 Groduate Fellow, Systems Science, SUNY-Binghamton, 327 Spring St. # 2, Portland ME, 04102, USA, (207) 774-0029,
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Possibilistic Méasurement - -

dual belief and plausibility measures on YA C Q are Bel(A) = 34 ,cam; and PI(A) = T4, za M), where

ALB2£ANB=0.-
The plausibility assignment (otherwise known as the contour function, falling shadow, or one-
point coverage function) of § is

Pl = (Pl(§wi})) = (Pk), Pk= PRLE

A,‘Bu.

Pl is a fuzzy set that can be mapped to an equivalence class of random sets (8]

When V4; € F,|A;| = 1, then S is specific, and Bel(4;) = Pi(4;) = Pr(A;) is an additive probability
measure with probability distribution Pl = 5 = (p;) with additive normalization Tip=1 Sis
consonant (¥ is a nest) when (without loss of generality for ordering, and letting A¢ = 9) Aj-1 C Aj.
Now PI(4;) = TI(4;) is a possibilicy measure. As Pr is additive, so Il is maximal in the sense that
I (Uj A,-) = V)- T1(A;), where V is the maximum operator. Denoting A; = {w1,ws,...,w:}, and assuming

that F is complete (i.e. Yw; € Q,34;), then Pi=7=(m)isa possibility distribution with maximal
normalization \/; mi = 1.

2.1 Consistency and Consonance

S is consistent when C(F) # 8. Each consonant random set is consistent with core C(¥F) = A, and F
being consistent is both necessary and sufficient for \/ Pl; = 1. Thus a consistent but non-consonant random
set has a maximal passibility distribution Pl = #, but its plausibility measure Pl is nota possibility measure
. While an additive probability distribution uniquely determines a measure and random set, a maximal
possibility distribution does not. However, a possibility measure II* that is optimally approximate can be
constructed according to the formula VA C QI (A) =V,.eaTi {5]. When § is already consonant, then of
course I" =Pl =1L

Dubois and Prade [3) suggest that the plausibility assignment of a consistent but non-consonant random
set Pl = 7 should not be taken as a possibility distribution, but rather should be used to derive a nest from
which a possibility distribution can be generated. That nest is the focal set of the constructed possibility
measure [I*, denoted F* = {B;}. The evidence for each focal element, denoted m} = m(By), is given by
the formula

mg = Z mj —mi_y
A,CBx

where mj = 0. This method results in a greater constraint on the evidence provided by m, and thus the loss
of some information available in a consistent § (see example in Section 4).

2.2 Consistent Transformations

When ¥ is not consistent, then \/ Pl; < 1. Here a set of focused consistent transformations §; can be
constructed from S [10, 11]. Yw; € Q, S is a consistent approximation of $ with evidence function [10]

ﬁl'(A) - { ’(')’:(A)"r'M(A—- {wi}), w‘.' eﬁ .

Wy

The effect is to create a core C(F;) = {wi} with focus w; = w*. Under the transformation $;, the sub-
maximal plausibility assignment Pl = (P1},Pl,...,Pk,.. .,Pl,) is transformed into a maximal possibility
distribution # = (Pl;,Plz,...,1,.. ..Plp). S; in turn generates a consonant random set S‘,? , determined
from the constructed possibility measure " of %. .

In using the transformation the task is to choose the “correct” w* as a focus, and to elevate the plausibility
of that element to 1 as a possibilistic normalization. While there are many methods to choose w*, to date
only the Principle of Minimal Information Distortion [10] (or Information Loss [11]) has been studied. Given
a random set S, then that focused consistent transformation S; is selected so that the total information
content of ¥ is as close as possible to that of the original S. Details of the measure of total information can
be found elsewhere {7, 10, 15].
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3 Empirical Random Sets

Assume that some pheromenal system can be described as aset @ = {w;},1<i<n. A traditional concep-
tion of a measurement on results in the observation of an element w; € Q. For example, a thermometer

" calibrated in integral degrees on the interval [0, 100] could yield a result of 72 degrees, 72 € {0,1,...,100}.
Assume a counting function ¢: 2 — Z,¢; = c{w;), where ¢; is the number of observations of w;. Then
for a total number of counts as N, the frequency distribution on Q is £:Q — [0,1],f(wi) = fi = «/N.
Since 3, fi = 1, therefore f is a natural probability distribution on Q with an additive measure F:2% —

(0.1, F(4) = To.ea fi-

3.1 General Measuring Devices

However, most real measuring devices are not like this, due to necessary measurement uncertainty. Most
measurements produce an observation of some subset A C Q, perhaps an interval A C R. The observation
of the interval A leaves uncertainty as to the “actual” value w € A. .

It may be that not all subsets are observable. Thus a general measuring device is defined as a class
C={Ap)C 29 1 < j' < N'. The nature of the measuring device will depend on the elements and structure
of C.

Assume a collection of set observations A¥ € C,1 < k< M. In general, for some k,, k2, it may be that
Akr = Aka, Therefore the A* forma multi-set, denoted as a vector A= (A} A%, AM ). The empirically
derived focal set FE C C is the set of subsets that are actually observed in A. FE ig derived by eliminating
the duplicates in A. Let F¥ = {4;}, where FECC1<j<N<N,N<MandVa; € F5 4 € A, and
inclusion of an element in a vector is defined as would be expected. . .

Now establish a set-counting function C: ¥ E . I,C; = C(A;j), where YA; € FE C; is the number of
occurrences of Aj in A. Finally the set-frequency function is arrived at

mE: FE —{0,1), mE(4;) =mf = Ci =C;[M.

ZA jEFE CJ
The intention is obvious: since Y;mf =1and 0 ¢ F E therefore mF is a natural evidence function on €
generating an empirically derived random set denoted SE.

3.2 Disjoint Measuring Devices

Generally, scientists strive to construct measuring devices for which C is disjoint; that is, VA;, Az € c,Al
Ag. In such classical measuring devices, C is an equivalence class on Q, yielding an observation ofan A¥eC
unambiguous.

Virtually all traditional measuring devices are of this type. A typical example could be a thermometer,
where 2 C R is some distance along 3 glass tube marked at certain points, say dj, with a certain number
of degrees. The A could then be the disjoint, equal length, half-open intervals Aj = [dj, dj41). Observation
of a specific position of the mercury (an w € A;) yields a specific A; reading for the temperature. The size
of the A; relative to the size of the tube indicates the precision of the thermometer. While any particular
interval A; is usually identified with one degree reading (either d; or dj41), it must always be kept i mind
that it in fact indicates the entire interval [d;, dj41)-

Because the A; are disjoint, observation of any one particular interval admits to no uncertainty at the level
of description of C. Thus in this case C itself can be considered as a new universe of discourse @' = C = {4;}.
Because the A; are disjoint, so will the A®.

Now mE is the fréquency of the disjoint A;, and is thus a true probability distribution, and not an
evidence function proper. Measurements from a classical measuring device are usually parameterized in
time k, yielding the observations Ak as time-series point data. An additive distribution and measure are
derived as for frequencies above

I, fi—[0,1, F:2Y=10,1]
¢(A) = ¢ = C(4)), fla)=fi=mf, 3 fi=1, F(Bc®)= Y i
J

As€8
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4 Instrument Ensembles

One way to generate measurements of intersecting subsets is to use an ensemble of classical instruments. That
ensemble can be considered as either multiple, heterogeneous instruments taking separate measurements at
the same time, or as a single instrument which is changing its structure over time.

" LetCt = { A;;} /1< ji < Nb = |Ca| be disjoint classes on ©, and F = {C*} be the family of such classes,
1 < k < M. The natural partial order on F is
c<cr 2 vatec?, 3{allcc, AL ={Ja4l.
When C! < C? then C! refines €2, and C? coarsens C'. For example, C! could be a thermometer reading in
tenths of degrees, while C? could belong to a mutually calibrated thermometer reading in whole degrees. F
is consonant whenever the C* are all comparable under < (they are all mutual refinemnents or coarsenings).
Leting A* be the subset observed in device C*, then the vector of observations over F' is A=(A*) |Al=

M, and A generates the empirical random set SE as described in Section 3.1. If any of the C* share common
members (in particular, if any of them are equal), then some of the A* may be equal, yielding multiple
observations in A of certain subsets. Otherwise, all subsets will be observed a single time, and will not
necessarily be disjoint.

Assume observations from two devices, say A! € C* and A? € C2. It is expected that Al £ A% In the
event that A! L A2, then at least one of the devices C! or C? would be regarded as being in etror, or perhaps
even the assumption of the “reality” of the quantity being measured would be questioned. Thus, while there
is nothing in the mathematics that would preclude such a result, pragmatic conditions require that & be
consistent, so that SZ has a natural possibility distribution » and at worst a constructed poesibility measure
[I*. In the event that FE is nevertheless not consistent, and there are pragmatic reasons for accepting the
results of the measurement, then the focused consistent transformation method outlined in Section 2.2 is
available to construct consistent random sets S;. . ,

When F is consonant, then without loss of generality for ordering, C' < C?<...<CM Hereif FE is
consistent, then it must also be consonant, with A; C Az C...C An. Of course, in this case a possibilistic
analysis is less useful than it would be otherwise, since there is an absolute gain in accuracy in the movement
towards the finest measurement Al. Nevertheless, the mathematical analysis is available.

Example 1: Let @ = [0,5] C ® and define a family F of four measuring devices

= {[0, 1)! [1’2)’ [213)’ [314)v [4a5]}1 ‘= {[0’ 1): [1’2)1 [2s 3-5)-[3-5: 5]}'
¢3 = {[0,1.5),[1.5, 3.5),[3.5,4), [4,5]}, ¢t = {[0,1.5),[1.5,4),[4,5]},

so that M = 4. F is not consonant, but €3 < C*. Measurements are made on each instrument yielding
a vector of four measurements (Figure 1)

A=([1,2),1,2),(1.5,35),[1.5,4)) .
After eliminating duplicates, the set of observed intervals FE i3 derived with N = 3 < M and

— fommmsss s = ~| ct
— fm S el

1 4 - 2
[ e | — ¢ 4 ct
L i L L ! —

Figure 1: Measurements on four instruments.

random set S£

FE = {[1,2),[1.5,35),(1.5,4)},  SF = {([1,2), 5),([1.5,35),.25) ,([1.5,4),.25)}.
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FE is consistent with core C(¥E) = [1.5,2), the region on which # = 1. #(w) is determined by
7w) = T a;sw m¥, so that
5 wel[l,1.5)

-

, wel[L5?)
rw)=4 5 wE€ {2,3.5)
25, wels.s,9)
0, elsewhere
as shown in Figure 2.
— - 1 - 1 1 1

0.75 -

m(w) 0.5 -
0.25 l—‘ -

Figure 2: 7 determined from SE.

Dubois and Prade’s met.hod described in Section 2.1 results in the consonant random set

{{115,2),0),{[1,35),.75) . {{1,4), 25)}

and possibility distribution shown in Figure 3. Comparing Figures 2 and 3, it caa be seen that reliance

on the consonant class and its greater constraint results in a loss of distinctions of possibility values
over portions of the possibility curve.

1 T 17

0.75

7 (w) 0.5
0.25

Figure 3: =* determined from Dubois and Prade’s method.

Because FE is finite, 7 is piecewise continuous, consisting of a union of constant segments. Also,
because C(FE) is connected, * is unimodal at C. Therefore = in this example, and in the sections
to follow, has the form of a centrally peaked staircase. As |FE} — o0, * approaches the traditional
forms for possibility distributions (e.g., fuzzy numbers 2.

5 Consistent Intervals from Focused Point Data

Even given a single measuring device and time-series data gathered on it (as discussed in Section 3.2), which
is our normal concept of measurement, interval data can still be generated. Sincc classical instruments
generate observations of disjoint intervals that can be regarded as distinct points in a higher-level state
space, therefore in the following sections a single measuring device that yieldc observations of points in a
lower-level state space, 3 closed interval @ C R, will be considered.
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Denote an observation as a data point d €., and the collection of data as a data stream, a multiset

_denoted as the vector D=(d),1<ign. The set generated by eliminating duplicates in D is the data
set D={d}},1<i<n'<n.

A possibilistic analysis of D will be approached by using its order statistics [1]. For a given data stream

D, the order statistics, denoted d;), are a permutation of the d; such that d1) < d(z) < ... < dgny. d(1) and

d(n) are called the extremes, and the range intervalis W = [d(1), d(n)]- The order statistics of the data set

D are dj;),1< i< n'. The d’(,.) naturally generate the disjoint intervals §; = [d{,.),d& +1)) BESES D
For completeness, let 6 = [dzn,), d{”,)] = {d’(n,)}. Let the set of disjoint intervals be A = {6;}, so that
Usea di =S :

5.1' Focused Dat# Intervals ‘—

A thus represents a classical measuring device with the §; partitioning W, and so the greatect problem with
deriving a possibility distribution from A is the lack of a focus, or any core. Thus we posit the existence of a
focus u € W. The purpose of u is to provide a value on which all the intervals (yet to be determined) agree;
a value for which () = 1. u naturally divides W into left and right sub-intervals denoted W; = [d(l),u)
and W, = (u,d)] so that Wi U [u,u]UW, = W.

Given a focus u € W, then Vdg) # u,d) € Wi or d) € Wy. Denote the intervals A, 1 < i< nas

follows:
. &d(i)'"ll' diy € Wi
A= u, d(i) s d(,-) eW, .
[u, u] N d(.-) =u
Since

dgiy), din) EWI, 1Sz — AP c Ay and  dg),dan) €W, 1< — Ah C A2,
therefore each of the sets of intervals
Fi = {A 1dip € wil, F = {A tdiy € w. 1,

are nests. Since Vi,u € A, the total set {A} is consistent, forming a focal set FE = FiUF, with core
C(FE) = [u,u] = {u}. SE is then constructed from the counts of the d;) € D of the corresponding interval
At

Generally, each d(;) will generate a single count for the interval AS. However, if iy, iz, A = A% then
multiple counts will be generated as discussed in Section 4. If u = d() or u = d(s) then F E will actually be
consonant.

Example 2: As above, let Q = [0, 5], and assume that n = 6 point observations in {2 are taken giving the
data stream D = (2,1,4,1 5,2,4.5). The order statistics are

dy=1, dp=15 da=dw=2 ds=4 de=43

and W =[1,4.5]. The corrwponding data set is D’ = {1,1.5,2,4,4.5} so that n’ =5 < n, with order
statistics and disjoint intervals

diy=1, dgy=15, dig=2 dy=4 d=43

A = {[1,1.5),[1.5,2),[2,4), [4,4.5),[4.5, 4.5}
Assuming that u € [2,4], then the focal and random sets (Figure 4, with u = 3) are

FE=FUF, = {[1:“]’{15' “]t[2'“]}u {lu’4]t[“’4-5]}'
SE = {([1,u],1/6),([1.5,4],1/6) ,([2,u],1/3) , ([u.4],1/6) »([u,4.5],1/6)} .

The possibility distribution is shown in Figure 5.
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a | S—— At
,A —] A3
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el I -
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1 2 3 5 6 dsi)
1 23 45 i

Figure 5: Derived possibility distribution.

5.2 Choice of Focus

So far the method by which the focus u can be chosen has not been discussed. While a number of methods
suggest themselves, selection of methods will depend on user methodology and further empirical research.
However, in Example 2 the first four methods below all yield u € (2, 4], which is the inner interval of A (see
Section 6).

Sample Mean: Selection of
u=D= Z di/n

is a possibility, although one that is not in keeping with possibilistic concepts. In our example, this
would yield u = 2.5.

Range Midpoint: The midpoint of W, denoted W, is much more in keeping with possibilistic concepts:

_d
w=W= (1)42'0'(':).

It expresses something like the concept of a “poesibilistic sample mean”. This would yield 4 = 2.75 in
the example.

Closest to Range Midpoint: There may be some value in having u actually be one of the data points, so
that u € I. This can be done by selecting that d} € I closest to W (vielding u = 2 in our example):

u = min |d} - W)
deD’
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Data-Set Midpoint: The middle point of the data set itself can be chosen, that is
- . u=djy
(=)
if n’ is odd. If n’ is even, then either
u=dipyg) F U= d'(*“).
Alternatively, if n’ is even then the midpoint of the central interval can be selected:

Ay + )

u= 3

Information Principles: Finally, the Information Principles introduced .in. Section 2.2 can be applied to
the problem (11, 12]. Again, details will not be given here. Selection of u can be regarded as a problem

of ampliative reasoning, of making an inductive inference beyond the given information. Then the .

Principle of Maximum Uncertainty can be invoked, which states that u should be chosen so as to
maximize the total uncertainty of the resulting random set, or of the final possibility distribution.
Alternatively, selection of u can be regarded as one of transformation from the frequency distribution
of D to a possibility distribution. Then the Principle of Uncertainty Invariance {13} or Minimal In-
formation Distortion (10} can be used, which states that u should be chosen so as to make the total
uncertainty of SE as close as possible to the entropy D.

¢ Interval Cores

A potential disadvantage of the methods in Section 5 is the relianceon a singleton-valued core set C(FE) =
{u}, while the other elements of the method are the intervals & and A'. Instead, methods that yield an
interval-valued core can be considered. A disadvantage of these methods is that they may eliminate some
data points, thus loosing some information from the resulting SE.

Let D,D’ and A be given as above. Now identify the core as an interval in the range with endpoints
C; and Cy, so that c=[C,CAC W. Assume for the moment that 3dg;) € C. Then the left and right

ranges can be redefined as W = [d(l)v C;) and W = (C,,d(,.)], so that WiuCUW, = W. Also redefine
the intervals A’ as follows:
A= { &d(i):cr‘ , di) €W
Crda), dn€Wr ~
Again F; and F are nests, so that F& = Fi U ¥, is consistent with core C(FE)= N4 =C.
If 3{d(x)} C C, then a new data set D~ = D —{dw} 8 defined, where the operation — of a set from a

vector is just the elimination of Vdg) from D. Corresponding new d(".), D'~ etc. can be generated without
special treatment. '

6.1 Choice of C

As with the selection of point foci, there are a variety of methods by which an interval core can be selected.

Central Disjoint Interval: If n' is even, then a central disjoint interval is naturally generated from the
data set D'
C= n’f2-

Since dipij2y 9(a 41) € C, all instances of them will be climinated from D in forming D~
2

Modified Central Interval: If 0’ is odd, then there are two disjoint intervals on either side of d'( wp)’

Thus a core would be selected
C = 6--—] U&-*] s
2

é
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that eliminates instances of the three data points 4’ ., _,\+ 47 aray ) and &' from D.
) (=) (

~ ) 24)
Alternatively, the midpoints of the two disjoint intervals rround d'( 241) can be selected as the endpoints
of C: - -

oo [“'(L';ﬂ) * e apy Hap) t )
2 ! 2 J :

Disjoint Interval Around Focus: Given a method from Section 5.2 to select a point focus u, then C can
just be selected as the data-generated disjoint interval around u:

C =..6'_,.v_ u€ 6‘,-.
As above, instances of df;y and df; ) will be eliminated from D.

Confidence Interval Around Focus: It may be appropriate for the user to involve some traditional sta-
tistical information. Again, given some focus u, then C can be selected as the interval within a standard
deviation of u: . -

C= [u —-o(D),u+ o(D)] .

Information Principles: Methods of Uncertainty Maximization or Invariance can be applied, as discussed
in Section 5.2.

7 Consonant Intervals from Focused Point Data

It may be desirable to go as far as generating consonant, not just consistent, families from a data stream D.
However, as the methods progress from consistent families with point focuses, through consistent families
with interval cores, to consonant classes, the constraint on SE increases, thus loosing information available in
the original D. This is reflected in the loss of some data points in the interval core methods, and in roughly
half the number of available intervals from the following consonant methods. Thus as with the case of an
ensemble of measuring devices (Section 4), use of strictly consonant cases may be less useful than simply
consistent cases.
Again, a number of methods present themseives.

Inner Nested Intervals from Interval Core: Assume that an interval core C = [Cy, C,] has been de-
termined according to some method discussed in Section 6.1. Denote A! = C, and construct a set of
intervals A® = [A¥, A¥] such that A}, A% € I’ and A* C A%}, Given an interva! A¥, then A¥+! is
the nearest interval determined by D/ containing A*

k4+) k k4l H k
APt = max, dp <Al AT = 0, sy > Ar-

The A} are available up to a maximal Al"'/2) = W. FE = {A*} is then a consonant class. The count
of A* can be determined as the maximum aumber of occurrences of either endpoint of A* in D.

Inner Nested Intervals from Point Focus: Assume instead that 3 point core u € W has been deter-
mined according to some method discussed in Section 5.2. Now simply let A! = {u,u] and apply the
method above. :

Outer Nested Intervals: Proceed in the opposite direction from above. Now define A! = W, and con-
struct A¥+! from AF as follows:

k41 i k k+l k
At = d,(“)‘g},,diiﬂ A, AT = ,.:‘:g’,‘,,‘ie) < 4.
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ABSTRACT o

Multisensor fusion is becoming increasingly important in
intelligent computer vision systems. In this paper we present the
generalized fuzzy integral with respect to an S - decomposable measure
as a tool for fusing information from multiple sensors in an object

recognition problem. Results from an experiment with automatic target
recognition imagery are provided.

INTRODUCTION

Many intelligent systems use multiple information sources becavse
the information from any jndividual source is either partial or
contaminated, that is, it is uncertain and/or imprecise. To evaluate
this information properly,’ intelligent systems must be capable of
integrating both complementary and redundant information provided by
multiple knowledge sources. Pattern classifiers, scene analysis
systems, image processing systems, and computer vision systems all
mist be capable of integrating knowledge from multiple sources.

In an earlier work, we develcped a new evidence fusion technique,
based on the fuzzy integral with respect to gk-fuzzy measures [1]. The

fuzzy integral differs from the previously mentioned paradigms in that
both objective evidence supplied by various sources and the expected
worth of the subsets of these sources are considered in the fusion
process. In (2] we developed the fuzzy integral with respect to
different classes of fuzzy measures, namely, S-decomposable measures,
as an information fusion technique. We generalized the concept of the
fuzzy integral to increase the flexibility in the *“rule of
combination® of evidence. In this paper, we briefly survey that
development and demonstrate the usefulness of the generalized fuzzy
integral in a nultisensor fusion domain.

FUZZY MEASURES

Let X be a finite set and let @} be the power set of X. The
elementcs of NI are called measurable subsets of X.
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Definition 1: A set function 4 : 1 - [0,1] is called a fuzzy measure _
iff the following axioms hold. - - -

(1) p(@) = 0, u(X) = 1,
(2) u(A) s w(B) if A C B,

Fuzzy measures based on triangular cononrms (t-conorms) have been
studied by Dubois and Prade in [3]. They have shown many interesting
properties of these types of fuzzy measures and their relation to
shafer's belief and plausibility measures. Weber in [4] studied the ‘
fuzzy measures based on Archimedean t-conorms to define the Weber -
integrals. He called the fuzzy measures based on t-conomms
S-decomposable measures.

We cefine the S-decomposable measures, following Weber. Let X be
a finite set. Note that this restriction is only for simplicity and
that ail of our applications assume finite sets, but the theory can be
extended to infinite sets (see (4]).

Definition 2: A function g : 0§ — [0,1] with u(@) = 0 and u#(X) = 1
{s called an S - decomposable measure with respect to a t-conorm S iff
for A, BC Xwith2nNnB=4g,

#(AUB) = S(u(A),n(B)).

pefinition 3: A mapping X —» (0,1] defined by x, = p((xt)) - p" is

called a fuzzy density mapping and the set (ul,...,u‘) is called the
fuzzy density get.

We note that an S-decomposable measure is uniquely defined by

knowing the t-conorm and the fuzzy density mapping. Let X = (xl,... WX}

n

be a finite set and let p‘ - u((xl)). If A is a subset of X, A =
(yl, BN ,yp) , then

u(a) = p(ly,} U ... U (yp)) - s[#(lyt)),....u((yp))] .

Now, since p(X) = 1, the fuzzy densities must satisfy
1 n
S ,....p) = 1.

This equality would be trivially true if pl = 1 for some 1. Thus a
S-decomposable measure can be constructed by knowing the density
mapping and assuming that at least one nf the fuzzy densities is 1.
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THE FUZZY INTEGRAL -

Definition 4: lLet X be a finite set and O be the power set of X. leth

be a function from X into the closed interval [0,1). The fuzzy
integral over A C X of the function h with respect to a fuzzy measure
p is defined by

j h(x) o p(s) ~ sup [min [min h(x) , s(A N E) ] ]
A . EC X N xXEE . o o e e e T

The calculation of the fuzzy integral when X is a finite set is
easily given. lLet X (xl.xz,...,xn) be a finite set and let h : X >

[0,1] be a function. Suppose h(xl) 2 h(xz) 2 ... 2 h(xn). (if not, X

is rearranged so that this relation holds). Then Sugeno in [5] proved
that a fuzzy integral, e, with respect to a fuzzy measure j over X can
be computed by

e = max [nin [h(x‘).#(hx) ] ]. 69

1=1

where A = {xX_,...,% ).
1 1 1

Equation (1) is the "rule of combination® for the fuzzy integral-based
i{nformation fusion. If p is an S-decomposable measure, then the values
of u(Al) can be determined recursively as

B(A ) = pltx 1) = p (2a)
pa) = SGt BB ), ZELsT (2b)

The reader is directed to (1,2,5] for many theoretical properties
of fuzzy measures and fuzzy integrals.

let (pi . 1<1i<mn) be a fuzzy density set and let pg, p:, pf,

and uM denote the fuzzy measures based on y Sos , and S, t-conorms
(4 A

[6] (see appendix for definitions) respectively, for a permutation o
of the fuzzy density set. Since SD > 8, > sn > S‘, then for any subset

3
A of X,

PR HOR T ACET AGE 3)

470



For these measures, the following theorem (proved in [2]) is of
interest. i

Theorem 1: Let (ui .1 €1 <€ n} be a fuzzy density set that define a
fuzzy measure. Let h be a function from X to {0,1]. Then

9 { { {
h(x)yop (¢) 2 | h(x)op {+) 2 | h(x)op () 2 | h(x)op ().
jx ? le 3 JX {’I’ JX '3

THE GENERALIZED FUZZY INTEGRALS '

In the definition of the fuzzy integral Sugeno, in a loose sense,
used the max and the min operators to replace the addition and the
multiplication 1in the Lebesgue’s integral. It scems natural to
generalize the fuzzy integral by using a t-morm ingtead of the min
operator and by replacing the max operator with a t-conorm [6].

In [2] we suggested two types of gemeralizations of the fuzzy
integral which have natural interpretations. The fuzzy integral, as
defined in equation (1), may be interpreted as "the highest
pessimistic" grade of agreement between the objective evidence,h. and
the expectation, u. For the first peneralization, we replace the min

operator by any t-norm, ranging from 'l',‘ to 'r” (see appendix). The

resultant integrals can be interpreted as ranging from "the highest
pessimistic" to “"the lowest pessimistic®™ grade of agreement between h
ana p.

Let X be a finite set. Let h be function from X into the :losed
interval (0,1} and assume that h is sorted in decreasing order. Then
the above generalization of the fuzzy integral of tha fuction h with
respect to a fuzzy measure pu is written as

ey = max [ T[ h(xi).u(Al) ] ]. (4)

iw]l

where A = (xl,...,xi), and T is a t-norm. For example, °n is the

integral value of the function h with respect to a fuzzy measure u
when the t-norm TII is used instead of the min operator, T a

In [7] an alternative definition of the fuzzy integral of the
function h with respect to a fuzzy measure g is given by

471



J h(x) o s(+) = inf [max [min h(x) , #(A N E) ] ]

A ECX x€E

When X is a finite set and h(xi) > ... 2 h(xn), an optimistic version
of this integral can be calculated by

E = min [ max [h(xx)'“(A;) ] ], (5)
i=1
where A1 - (xl....,xl). This integral can be interpreted as "the

lowest optimistic" grade of agreement between h and u. Then by
replacing the max operator by any t-conorm ranging from SM to §,, the

resultant integrals will be interpreted as ranging from "the lowest
optimistic" to "the highest optimistic® grade of agreement between h
and u. Similar to (4), letting Es to denote the generalized fuzzy

integral of the function h (assuming h is sorted in decreasing order)
with respect to a fuzzy measure u using the t-conorm S instead of max
operator in (5), we can write

Eg = min [ S[ b(x‘).#(AL) ) ] (6)

1wl

where A = {X_,...,x ).
1 1 1

The following theorems (proved in [2]) establish an ordering of
the generalized fuzzy integrals for a fixed function h and fuzzy
measure j.

Theorem 2: Let s be a fuzzy measure and h : X — {0,1]. Let

S < S be two ‘t-conorms. Then E, < E, .
1 2 S1 Sz

Corollary 1: Let x be a fuzzy measure and h : X — [0,1]. Then E” 2 E8

ZEH?_ E/‘

Similar to theorem 2, we have:
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Theorem 3: Let p be a fuzzy' measure énd h: X -—-) [0,1}. Let

T < T be two t-norms. Then e, < €m -
1 2 '1‘1 '1'z

Corollary 2: let p be a fuzzy measure and h : X — [0,1]. Then

eMz enz 382 ev'

APPLICATIONS - MULTISENSOR FUSION

The fuzzy integral was used as a segmentation tool in [8-9], and
as a fusion technique in {1-2]. Here, the design and the
implementation of a multisensor object recognition system using the
generalized fuzzy integrals with respect to t-conorm-based fuzzy
measures (S-decomposable measures) is explained.

At any level of recognition, the classification problem can be
stated as follows : Let C = (cl,...,c.) be a set of classes or

hypotheses of interest. Let A be an object under consideration in the
scene. Then one must decide to which class Cx' object A belongs. Note

that each CL may, in fact, be a set of classes by itself.

Let X = (xl,...,xn} be a finite set. Each x, is a knowledge

source or may itsclf be a set of knowledge sources for the recognition
of a particular class, Cx' 1 < 1 < m. Let A be the object under

consideration for recognition. Let hk : X 5 {[0,1] be the partial
evaluation of the object A for class Ck, that {is, ‘hk(xx) is an

{ndication of how certain we are in classifying the object A in class
Ck using the knowledge source X .

In orderL to calculate the fuzzy integral value, the degree of
importance, 4 ., of how significant x is in the recognition of the

class Cu‘ must be given. These densities can be subjectively assigned

by an expert, or can be generated from a training data set, as in
11,2,9].

After sorting the h function in descending order (along with
their corresponding densities), we can construct the S-decomposable
measure, §, using equations (2). Now, using equations (4) or (6), the
generalized fuzzy integral value can be calculated.




DO FOR each object
DO FOR each class
Get hk(xx)

sort h (x) in descending order

Calculate measures recursively by equation 2

Calculate genenralized fuzzy integrals by equation 4 or 6
END DO
Classify object into class with largest integral value
END DO

RESULTS

The data consists of several sequences of FLIR (forward looking
infrared) and and TV images containing an armored personnel carrier
(APC) and two different tanks. There were five 100 frame sequences of
FLIR and two 100 frame sequences of TV images.Sequence 5 of FLIR and
sequence 1 of TV were taken simultaneously and constitute the
multi-sensor data.

Size-contrast filters were run on each image to detect objects of
interest. Several different statistical and texture features were
calculated for the object windows found by the prescreeing operation.

Here, the features are assumed to support the existence of an object
directly. In this experiment the system was tested by multi-sensor
data on sequence 5 of FLIR and sequence 1 of TV, using sequence 4 of
FLIR and sequence 2 of TV for training. The h functions were generated
using the (smoothed) normalized histogram of the training data, and
the fuzzy densities were generated using the method described in [10].
Here, we consider the problem of target vs. non-target. In this
problem there were 11 features for each sensor. These features
consisted of four statistical features and seven texture features
calculated on the unsegmented objects. In a [11], we subdivided this
problem into specific classification problems, and investigated the
effect of a multilayer structure on the multisensor fusion problem for
object recognition. :

Tables 1 and 2 show these results. Table 1 shows the result of
using different integration values for final classification and Table
2 shows the confusion matrix of the best overall classification for
the problem. As it can be seen from Table 1, the best total correct
classifications occurs for ED' the highest optimistic integral value.

This is due to the fact that many sources (features) provided zero
values for all classes including the correct class. The reason for
this 1is the training data wused to generate the h values was
considerably different from the testing data. The testing data was
registered multi-sensor data whereas the training data consisted of
two non-corresponding sets of single sensor data, a practical problem
when dealing with real data. The robustness of this approach is
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demonstrated by the fact that, except for the most pessimistic
integral , over 68% of the data-was correctly classified in ‘spite of
the problem with the data.

Table 1
$ Total Correct Classifications for 1l-level Configuraticn

| ED Es En EM 4 en tg. g .- - -~ -

| 96.9 78.2 80.1 79.1 68.7 71.8 75.5 9.8

Table 2
Confusion Matrix of Best Overall Cliassification

Target Non-target
Target 300 0
Non-target 10 16

CONCLUSIONS

In this paper, a generalization of an earlier methodology for
information fusion using the generalized fuzzy integral with respect
to a fuzzy measure based on a t-conorm was applied to the problem of
multisensor fusion. S-decomposable measures allow the prediction of
the effects of changes in importance of nodes to the overall
evaluation. Also, these measures can simulate the different attitudes
necessary for information fusion.

The generalized fuzzy integral algorithm as a multisensor fusion
paradigm was applied to the problem of automatic target recognition
and produced excellent results.
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Appendix
The t-conorms used in this paper:

1. Drastic sum

a, b=20,
sn(a,b) =< b, a=0,
1, a,b>0.

2. Bounded sum
Ss(a,b) = min(1l,a+b)

3. Algebraic sum
sn(a,b) =a+b - ab

4. Logical sum
S‘(a,b) = max(a,b)

The t-norms used in this paper:

1. Drastic product

a, b=0,
TD(a,b) =<{b, a=0,
1, a,b>0.

2. Bounded product

'rz(a.b) = max(0,a+b-1)

3. Algebraic product

Tn(a,b) = gb
4. Logical product

T‘(a,b) = min(a,b)
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ABSTRACT

Many propositions to extend database management systems have been made in the last decade.
Some of them aim at the support of a wider range of queries involving fuzzy predicates.
Unfortunately, these queries are somewhat complex and the question of their efficiency is a
subject under discussion. In this paper, we focus on a particular subset of queries, namely those
using fuzzy quantified predicates. More precisely, we will consider the case where such predicates
apply to individual elements as well as 1o sets of elements, Thanks to some interesting
properties of a-cuts of fuzzy sets, we are able 1o show that the evaluation of these queries can be
significantly improved with respact (0 a naive strategy based on exhaustive scans of sets or files.

1. INTRODUCTION

The database management systems currently available are based on the relational model and they suffer
several limitations regarding user or application needs. In particular, it is assumed that data are precisely known
(or fully unknown) and queries are based on cris conditions. The notion of imprecision can be introduced in
such systems at two levels : for representing imprecise or uncertain Aata and to allow flexible queries. In this
paper, we will only consider the second aspect, that is to say that the ... a are assumed to take their values in
ordinary universes, whereas queries may contain imprecise conditions. lu this way, regular data bases are taken
into account and the users are provided with answers consisting of an ordered list of elements (tuples) accordin :
to their adequation. : 3

Various kinds of compound fuzzy predicates have been proposed in recent years [4, 8]. Base predicates
described as fuzzy sets (i.c by means of characteristic functions) can be altered by linguistic modifiers and
arranged together using connectors or aggregates in order 10 reach the appropriate semantics. Depending on the
context, a predicate may apply to individual tuples or 10 sets of tuples; in both cases, 2 problem of performance b
is posed if the number of tuples is large and an exhaustive scan is performed. In a previous paper {3], we !
concentrated on the evaluation of compound fuzzy predicates applying to individual tuples. In particular, we
showed that the computation of an alpha-cut of a fuzzy set could be performed in two steps : efficient selection, 4
of a superset of the alpha-cut by means of a boolean condition followed by the computation of the alpha-cut
itself from this superset. In this paper, we deal with the evaluation of fuzzy quantified predicates which can
concem either individual tuples or sets of tuples. Fuzzy quantifiers were first introduced by L.A. Zadeh {10] to
generalize the existential (3) and universal (V) quantifiers. Recently, R. Yager suggested another approach to
the definition of fuzzy quantifiers {7, 8, 9]. Our aim is to point out some efficient strategies for the evaluation
of fuzzy quantified predicates, since efficiency is a key point in DBMS's [5).

In section 2, fuzzy quantified predicates are introduced along with their two possible interpretaticas.
Their use in the framework of an extended relational language is also illustrated. In section 3, we point out
some interesting properties of the OWA aggregation operator which will be useful in improving the
evaluation. The evaluation of fuzzy quantified predicates applied to individual tuples and sets of tuples is
discussed in sections 4 and 5 respectively. Starting from a naive strategy based on an exhaustive scan of the
concerned elements, we point out some properties intended for limiting the data to be accessed (and
consequently the 1/O volume). To conclude, we summarize the main results and draw some directions for future
work.

II. FUZZY QUANTIFIED PREDICATES AND THEIR INTERPRETATION
2.1. Tuple and set oriented predicates

In the usual relational framework, we can distinguish predicates P applying to individual elements (x's)
ofaset X:

P:xe X-[0,1}
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and predicates whose argument is a whole set X of elements :
P:X - 10,1}
Typical examples of these two categories in an SQL language are
“find the employees eaming more than $4000" expressed :
select * from EMPLOYEE where salary > 4000
and “find the departments where the average of the salaries is over $4000" expressed :
select dep from R group by dep having avg(salary) > 4000.

2.2. Fuzzy quantifiers according to Zadeh

In the context of an extended relational language supporting imprecise querying suchas SQLf{1,2]).it
seems natural to introduce fuzzy quantifiers inside queries. The initial quantified propositions made by
L.A. Zadeh were basically applying to sets of tuples (10) as shown in the following query example :

*tind the best 10 dcpmb‘nenis where at least three employees are middle-aged™ expressed :

select 10 dep from EMPLOYEE
group by dep having at least three are middle-aged (A).

Afterwards, J. Kacprzyk suggested an adaptation for individual tuples (6] inside queries such as :

»find the best 10 employees matching almost all of the predicates {middle-aged, really wcll-péid. O b
expressed : ‘

select 10 * from EMPLOYEE . S .
where almost-all among {middle-aged. really well-paid, ...} ®).

In both cases. the quantifier is seen as a fuzzy set defined on the cardinality of a fuzzy set. In example
A. the quantifier is absolute (at least three) and the associated fuzzy set maps R into the unit interval [0,1]. If
AQ stands for an absolute quantifier, the expression "AQ X are D" is interpreted according to the formula :
Hag(ZHp(x;). where THp(x;) denotes the absolute cardinality of the fuzzy set associated 10 "X are D*. In
example B, we have a relative quantifier which is represented by an application from [0.1 to [0.1). H RQ
represents a relative quantifier, the expression "x matches RQ among {P}. .. , Py)" is defined as :
Hro((Zhtp (x))/n). Possible shapes for the quantifiers used in these examples are given in figure 1.

f

1 1

0 0
— , —
012345678... 0 1

at least three almost alt

Figure 1. Examples of the representation of two quantifiers.

2.3. Fuzzy quantifiers according to Yager

R. Yager recently suggested representing mOnROLONOUS quantifiers by means of OWA aggregations [9].
First of all. let us recall the definition of an OWA :
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n .

OWA(W1, ore » Wne X1, s Xn) = Y, (wi*x) m
i=1 -

where xy, is the ih 1argest value among the X;'s.

Example. Let us consider the case where W = (.1, 2, .3, 4) and X = [ 4, 9, .6, .1}. We will compute (.1 .
9+ (2*6)+(3* 4) + (.4 *.1) and we g&t the value : .37, i

In this context, a fuzzy quantifier is represented by the weights put into the operator, each of which expressing
the contribution of the i®* largest clement according 10 the figure drawn below :

A q

1

wi

Figure 2. Weights design for a fuzzy quantifier.

2.4. Comparison of the two approaches

We will make the comparison in the context of an example. Let us consider the query : "find the sets
where at least three elements are C" along with the two following fuzzy sets : {a/.9, b/.8, c/1, d/.1, e/.2, f/0}
and {a’.4, ©v"/.7, ¢'/6, d'/.5, ¢/.8) where the degree indicates the extent to which an element satisfies C.
According to Zadeh's definition, the two scts have the same cardinality (3) and they will be considered
equivalent whatever the characteristic function chosen for the quantifier. On the contrary, if we take an OWA
interpretation with weights wy = 13, w2 = 13, w3 =13, wj=0Vi> 3, the degree for the first set is : .9 and
that of the other is : .7. We prefer this second result since we believe that it wi'l better meet database users’
intuition. The limitation is in the restriction of monotonous quantifiers, but the semantics of such an operator
seems t0 be more convenient for database queries and this approach will be considered in the rest of the paper.

2.5. Queries under consideration
More precisely, we will concentrate on the evaluation of three types of queries :

- tuple-oriented (or horizontal) fuzzy quantified predicates :
select ... from R where Q among {Py e » Pal

- type 1 set-oriented (or vertical-1) fuzzy quantified predicates :
select ... from R group by att having Q are D

- type 2 set-oriented (or vertical-2) fuzzy quantified predicates :
select ... from R group by att having Q (C are D)
In the first case, the weights are statically defined by the user (or an administrator) and the calculus is to be
carried out according to formuia (1). In the last two cases, the quantifier is assumed to be represented by a fuzzy
set Q and the weights are calculated dynamically (depending on the set the quantifies applies 10) and used inthe
following manner {9} :

-type 1: i) wi= Q(i/n) - QG-Dn); )
ii) compute Tw; * Hp(xy) Whese Xy, denotes the i largest value among the Rp(x;)'s:

- type 2 : i) compute ¥; = He(xy) for each x; in X: call z; the it* smallest among the yi'ss
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i n i-1 n
iwi=QY Y 2)-AL 32 4k
j=1 i=1 j=1 i=!
iii) computeE;:max(pD(xi).pE(x;)) C are D is scen as the implicationC = Dt —

iv) compute T'x w; * Ex; where Ey, represents the il® Jargest vatue among the E;'s.

In both cases, n is the cardinality of the set of tuples concerned with the quantification. For the sake of clarity
and without loss of generality, we will assume that predicates involved in a quantification (Py, ... . P, Cand

D) are atomic fuzzy predicates.

Example. Let us consider the proposition "most of the middle-aged employees are well-paid”™ and let us
assume a set of five employees el to €5 such that middle-aged = {.6/el, .3/¢2, 1/e3, O/c4. .1/e5}) and well-paid
= {.8fel, 4/e2, 9/e3, 1/e4, 1/e5). Morzover, let "most of” be represented by the function : x - x2. The
weights will be : wy =0, wy = 0025, w = 0375, wy = .21, ws = .75. The valve of "middic-aged = well-
paid” for each employee is : {.8/l, .7/e2, 9/e3, 1/ed, 1/eS) and the final value of the proposition is given by :
(1 *0) + (1 *.0025) + (.9 * 0375) + (8* 21) +(7*.75) = 72925.

III. SOME PROPERTIES OF THE OWA OPERATOR

The idea which will be developed in the rest of the paper is situated in the scope of the evaluation of
such prediczies for a given threshold A (satisfaction degree). The reason for that is the fact that in general, the
user is only interested in a small subwofmplesandmmpreciselymeh&ms.lnmy case, we are only
interested in those tuples whose degree is over G, consequently, 0 is a lower bound for A. In the following
sectionswewmexmhwhowtoevalwehoﬁwmalandvuﬁcal fuzzy quantified predicates where the quantifier
is expressed by means of an OWA operator and we will also take advantage of properties of such an operator.

'meOWAisameanopcmtorandsoithasinmstingpropeniu:

OWA(W/. o » Wao X1y s » Xp) S MAX(Xy, oee s Xq) 2)
OWA(Wy, cee s Wno X1y o« Xis cees Xp) S OWA(Wg, we s Wy X1s cen s XioloeesD) B %))
OWA(W, v s Wao X34 e+ Kjo oo Xp) S OWA(W, ... » Wal, X1 l) @)
OWA(W), ceo s Wpy Xy oo o Xjs v xa) 2 OWA(W), «-. « Wny X[y oee s xi.O....O) )

Prorerties (4) and (5) arise from : i) the monotonicity of any mean operatos, i) the fact that x belongs 10 {0.1).
From these basic properties, one can derive conditions bearing on the x;'s which ase necessary for the
satisfaction of the condition : _
OWA(W, wev s Wpo Xjueee + Xp) 2 A
From (2), one can assert :
OWA(Wye oo s Wa Xpo e s Xp) 2 A = max(x;, ... . %) 2A <3, x; 22 (6).
From (4). one can derive :
OWA(W1. oo e Wno X]e e s Xp) 2 A2 OWA(W]. . . Wp. Lo L I D 2 A
n-1
o (3 wi*D+wy*xi2h
i=1
e (1-wp)+ Wy *xi2A
and finally, we get :
OWAW]. oo s Wi X1 e X) 2 A = Vi 22280l .
n

This last formula is valid only if w, is strictly positive. otherwise no implication can be found. Moreover, it is
only profitable if (A + w,) > 1 (otherwise. we have a condition which is trivially satisfied).

From (3) and (5), we have : 481
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OWA(WI. e o wn. X]. see 'y Xi'l....l) < l => OWA(wlv see y wn- xl. oo o xn) < l - - (8)
and: )
OWA(W), wov s Wpe X1y one + Xi000) 2 A = OWA(Wy, «o. s Wao X1y one o Xis ers Xn) 2 A ).

These last two conditions will be used for partial evaluations of an OWA aggregation as we will see in section
5.

IV. EVALUATION OF TUPLE-ORIENTED FUZZY QUANTIFIERS
4.1, Initial strategy

Let us consider the evaluation of quantified conditions applying to individual tuples of the fona (in

SQLf): .
select ... from R where Q among {Py, ..., Py},

The principle is to compute the sum T, (w; * P(x)) and a naive algorithm could be :

for eachrin Rdo
for i from 1 to n do V{i] = pp,(0) enddo:
order the vector V giving V',
GV=0;
forifrom 1tondo GV =GV + V(i) * WIi) enddo
if GV 2 A then write(x/GV) endif
enddo .

4.2. Improvements

This algorithm is based on an exhaustive scan of relation R (in practice the entire file containing
relation R should be read) and it can be improved in two ways : the number of elements to be accessed and the
calculations to be performed on each element. 1t could be of interest 10 replace the outer loop by : "for each r
in R’ do”, as far as R’ is a small subset of R which can be easily obtained from R (and efficiently, for instance
without requiring the exhaustive scan of R) and it is sure that no possibly satisfying tuple has been discarded.
At this point, we can come back to properties (2) and (3) and profit from the derived formulae (6) and (7) to
proceed in two steps : creation of a subset R' of R by means of a usual boolean condition, then the
applicatior: of the previous algorithm on R'. One expected interest of the first step is the fact that a regular
DBMS is able to work efficiently as far as indexes or access paths are available. Formula (6) becomes :

Pi(n2Aor..or P(r) 22

and if we assume that each fuzzy predicate P; is represented by a trapezium on an attribute A;, we finally get a
condition : .
(r.Ay € [ips1)) or ... or (1A € [inSu)) ' @

where i; and s; are the inferior and superior values associated to the A-leve! cut of P;. In a way similar. formula
(7) (if (A + wp) > 1 and w, > 0) leads to the condition :

(r.A, € i s4])and ...and (rA, € [1'Sa)) )
where i; and s'; are the inferior and superior values associated (0 the (A + w, - 1)w,)-level cut of P;.

Since these two conditions are necessary, we can combine them together by means of a conjunction. However,
it should be noted that condition (8) is a disjunction and if used alone, it will generally require the entire scan of
the relation R 1o be executed and in this case, data access is not improved at all. On the other hand, condition
(9) is conjunctive and if on¢c of the attributes A is indexed, the whole condition can be processed with a limited

number of data access.
4.3. An example

Consider the membership functions drawn in figure 3 in the scope of the query :
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select * from EMPLOYEE where -
most { middle-aged, high-salary, low-commission, medium-sales, around(nb-chiidren.2)}.

According to the representation of "most” by the function : x - x2, the weight vector associated to the OWA
is:w; =04, wp=.12,wy=2, W=, 28, ws = .36. If we assume that we want the tuples satisfying this
quantified predicate at a level greater o equal to .82, we have to consider the operation :

OWA(.04, .12, .2, .28, .36, middie-aged(e), high-salary(e), low-commission(c), medium-sales(e), around(nb-
children(e).2)) 2 .82 for each employee e.

In this case, expression (8) becomes :

cage € (39,51] or e.salary 2 46000 or ¢.commission < 8500 ” ' 10) LT
or e.sales € [1.3,2.7] or e.nb-children = 2.

Since (A + ws) = 1.18 is greater than 0, formula (7) is applicable. (A + ws - 1)/ws = .18/.36 = .5 and
expression (9) yields:

e.age € [37.53] and esalary 2 41000 and ¢.commission < 9800 (11)
and e.sales € [1.2,2.8) and e.nb-children € L3}

From a practical point of view, expressions (10) and (11) can be used in two different contexts or architectuses. i
The first one is a pre-processing based on an explicit query submitted to a regular DBMS suchas :

select * from EMPLOYEE e where c.age € {37.53) and e.salary 241000 and
e.commission < 9800 and e.sales € [1.2,2.8] and ¢.nb-children € (1,3} and
(age € [39.51] or salary 2 46000 or commission < 8500 or sales ¢ {1.32.7] or nb-children = 2).

The second one would consist of using these conditions at the internal level of query processing inside an
extended DBMS able to evaluate fuzzy queries directly. .

middle-aged * low-commisssion .
1 1
82 ~ =\ - - -
o ——

35000 salary 12000 commission
most
1 1 -
82
- —
iM IM gales 01 2 134 nb-children 0 1

Figure 3. Membership functions used in the example.
V. EVALUATION OF SET-ORIENTED FUZZY QUANTIFIERS
5.1. Partitioning of relations and initial strategy

In section 3, the principle for the evaluation of fuzzy quantified predicates applying to one (or several)
set(s) of tuples was given. Hereafter, we will consider queries of the form "select att from R group by att
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having Q are D° (including 2 so-called _verlical-l fuzzy quantified predicate) where Q is a propertional

quantifier which will be represented by weights appearing in an OWA aggregation. The "group by" clausein - -
SQL is called partitioning and its meaning is explain=d in figure 4. , )

We now outline a naive algorithm performing the calculus, assuming that R; denotes the subset (or
parﬁtion)ofkwbetcanzvj :

for each r; in R; do V{i] = up(r;) enddo;

order the vector V giving v

compute the vector w;

comment this calculus anly needs the knowledge of n the cardinality of R; endcomment;
- GV=0

for i from 1 to ndo GV = GV + V'[i] * W(i] enddo;

if GV 2 A then write(v/GV) endif.

This algorithm looks similar to the previous one, but it is in fact very different. On the one hand the values
used in meaggxegaﬁoncomefranmemplesohpmﬁtion(isuedﬁmn thegmupingmechmism)andnotﬁmn
a single tuple, on the other hand the weight vector depends on n. the number of tuples of the considered subset
of relation R. Therefore, it is clear that if n cannot be known without scanning a whole partition, no
significant improvement regarding data access can be attained. So, we will assume that : i) the number of
elements of cach partition is known (this is possible especially if the relation is indexed on the attribute att or
if the partitions are built using a sort which maintains the size of blocks with identical sort key value), if) each
paniﬁoncanheaomdsepmalelybulswpby stepasmphsmrequired.

at an

y 2 set of twples of R

t ' where the value

a HE of the attribute att

z . a is the same (2)

v :

k .

t :

: \ : ant

E \ z setof uples of R

: . where the valve
: of the attribute att
2 is the same (z)

relation R

Figure 4. The "group by" mechanism in SQL.
5.2. Improved algorithm

Our aim is to reduce the access t0 tuples and by doing this, to indicate those conditions deciding
whether the calculus should continue or is able to be stopped. More precisely, the calculus (mainly the loop
which encompasses data access) can s1op in two circumstances : i) when the partition cannot reach the desired
level (M), ii) when it is certain that the partition will reach the desired level (1) and the precise value of the
membership degree is not required. This reasoning is very similar 10 what is done in the design of "try and
error” or "branch and bound” algorithms where some heuristics is searched in order 0 limit the number of
candidates to be examined.

Since n is known, the weight vector W can be calculated and in particular its last value w,, . Thus, if
the sum (A + Wy) is greater than 1, we can apply the condition (7) to any tuple r; of a pantition and insert the
following instruction :

if pplr) < A+ w,- 1)/ w, then exit endif

From a practical point of view. partitions with a large number of elements will lead to a low value for w, and
consequently this condition will not work frequently (except if A is very close to 1).
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Now. let us assume that we have already accessed k tuples of a partition (tuples 1, 10 %), and the
values VIi} = pp(ry) for i € {1X] are known. 1f we assume that the (n - k) missing values are 1 and the result of
the OWA aggregation remains under . according to formula (8) we can be certain that this partition will never
reach med&simdlevclkWehavetode\emimmeaggmgmhn:

n-k <
OWA(Wl, e 'wn, V‘. TN} Vk,l....l) = (Z Wi) + Z wn'k+i . vj..toi
i=1 i=1

This computation requires only that the values V(1] to V(K] are sorted. In addition, the expression has not 10 be
calculated from scratch from step k to step (k + 1) since for the first part, it is enough to subtract w,.x. Thus,
once again, we can specify a condition likely to stop the outer loop :

insert pap(,) into VI1:k}:
compute A = S Wi+ 3, Win-k+il* VEE
if A < A then exit endif
When k = n (last tuple of the partition), the value of A equals precisely the value GV which is the degree tied
to the partition.

Finally, if the value ofthemcmbushipdegmeomcpmiﬁonisnot necessary (for instance, the query
1ooks only for the best p partitions but does not aim at ordering them), we can take advantage of formula (9).
In fact this formula states that if we have already accessed k tuples of a partition (tuples rp to 1) and we
assume that the (n - k) missing values equal 0 and the result of the OWA aggregation already exceeds A, then
we can be sure that this partition will reach this desired level A. We have (o determine :

k
OWA(WI. vee s Wny V3eeee s Vk.o,.,,o) = Z w; * vk‘,

i=1

Here again, it is just necessary that the values V(1] to V(K] are sorted and we can specify a condition likely to
stop the outer loop : :
insert pp(ry) into V{1:k}:

k
compuie B= Y, Wi} * Vil
i=1
if B 2 A then write(v); exit endif
Again, when k = n. the value of B equals that of A and is GV the membership degree of the current partition.

We can now give the final algorithm, when n the number of tuples of any parition. is known in
advance :

A = 0; compute the vector W; comment WIi) = Q(i / n) - Q((i - 1) /n) endcomment:
for each r, in R; do

if o) < A+ w,-1)/ Wy then exit endif:

insert pp(rk) into V{1:k] ; comment in decreasing order endcomment;

A= ('_‘ik WD + i Win - k+i] * Vii:
it A'Z'A then exit endif;
B= i Wi} * VIl : comment these two instructions are present only if we
if Biz- ‘). then writc'(\q); are not interested in the membership degree endcomment;
endif et
enddo;

if A 2 A then write(vj/GVY) endif; comment this instruction appears if the previous do not
endcomment;
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Finally, we have (o deal with the last case, namely the so-called vertical-2 fuzzy quantified predicates
(Qr's C are D). If we look at the definition given in section 2, we can sce that the weights are dependant on
the value of the pc(x;)'s and it does not seem realistic to perform this calculus without the entire scan of the
underlying relation R. Consequently, the canonic algorithm derived from the definition can be applied and it
will require the exhaustive scan of all the partitions created by the "group by".

5.3. An example

Let us consider the query "find the best 5 departments where most of the employees are well-paid”
which is expressed in SQLS as :

select 5 dep from EMPLOYEE group by dep having most are we'l-paid.

We examine a department (partition) containing five employees ¢l 10 €5 with the following characteristics :

#emp #dep salary
e d 38000
4 d 55000
el d 46000
e5 d 32000
3 d 48000

with "most” represented by the function : x - x2, A is set 10 .73 and "well-paid” is the membership function
given in figure 5.

A well-paid

\ o
30000 50000 salary

Figure S. The membership function for the predicate “"well-paid”.

So, the fuzzy set well-paid is {.8/el. 4/e2, .9/e3, l/ed, .1/e5} and the weight vector Wis: w, = .04, wp =
12, wy = 2, we = 28, ws = .36. If we perform the overall calculus for these data (naive strategy requiring the
access 10 the S tuples), we get : (04 * 1) + (12* 9 +(2* 8) + (.28 * 4) + (.36 * .1) = 456: therefore,
this partition does not match our requirement (.73). Now, let us apply our improved algorithm assuming that
the tuples are accessed according to the order depicted above. Since (A + ws) is over 1 (A + ws - 1)/ ws = .25),
the first condition of the algorithm is interesting (not trivially satisfied).

Access employee €2 : Huenpuia(€2) = 4> 25 A= 784 > .73; B = 016 <.73 = the loop goes on
Access employee €4 : Woen.puid(ed) = 1> .25 A= .784 > .73; B = 088 < .73 = the loop goes on
Access employee el: Hoeaipia(el) = 8> 251 A = 728 > .73 is false = the loop stops here.

In this case. we save 2 accesses and if ¢5 were the first tuple of the considered partition. the loop would have
stopped immediately, since pwell-paid(e5) = .1 is under .25, and 4 data accesses would have been saved.

VI. CONCLUSION

In this paper, we have dealt with database management sysiems where conventional data are stored and
support imprecise queries. More precisely, we have concentrated on fuzzy queries involving quantifiers. We
have distinguished two main classes of such queries : 1) those where the quantified condition applies to each
element of a set (x matches Q among {P1, ..., Py}). and 2) those where the quantified condition concerns a
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quantifiers exist and we have chosen Yager's approach which is based on the OWA aggregation operator. since

we believe that generally it fits more the appropriate semantics of a database query.

whole set of elements : a) Q x's are D.orb) Qx'sCare D. Two major frameworks for the interpretation of

Our objective was to design some strategies for the evaluation of these queries, when 2 threshold for
the satisfaction degree is given by the user. Starting from a naive sirategy based on the exhaustive scan of the
considered set, we have pointed out some ies of the OWA operator allowing for some improvements
especially regarding data access. For type 1 queries, a boolean query selecting a subset of the clements likely to
be satisfactory can be evaluated and if appropriaie indexes are available, it is then ible t0 save data accesses.
For type 2a queries, where the number of clements of the concerned set is known, we have shown that

algorithms. The basis of the improvements is to reduce the number of data accesses. Consequently, we replace
algorithms in 6(n) by algorithms in O(n) and the class of complexity of the firal algorithms has not changed.
Finally, it does not seem that type 2b queries can be significantly improved.

One interesting result of this work is to show thata fuzzy query is not necessarily inefficient even for
queries involving quantifiers. Moreover, the notion of heuristics used for type 2a queries is likely to work for
other kinds of set-oriented queries such as those where a fuzzy predicale applics 102 ngonotonic aggregate (sum

or average on positive values for instance). In the near future, we will perform some simulations in order to get
an idea about the gain provided by our improvements.
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I. INTRODUCTION

One of the main requirements of a rocket engine Health Monitoring (HM) system is
its ability to recognize potential failures of all kinds such that catastrophic failures can be
avoided through cutoff and other less catastrophic failurcs can be avoided through repair
works. The HM system must have the ability to learn new situations and be able to recognize ..
potential failures. The behavior of key SSME performance parameters vary significanily
depending on engine power level and changing interface conditions (Nemeth et al., 1990,
Millis 1991). Parameters included in this list are turbine discharge temperatures, other
turbopump inlet and discharge temperatures and pressures, turbopurnp speeds, propellanm
flow rates, and valve positions. Therefore, a model based approach is well suited to identify
dynamic, nominal operating values. In real HM operation, we are always confronted with
uncertain data, data where event of physical failures occurs. A fuzzy set approach (Kosko,
1992) to describe this data is most logical.

In the recent years, researchers are investigating a new paradigm for problem solving
and learning, by using specific solutions to specific situations (Riesbeék and Schank, 1989).
The basic idea is to make use of the old solutions while solving a new problem, and such an
approach is known as Case Based Reasoning (CBR)(Krovvidy & Wee, 1992, Riesbeck &
Schank, 1989). A model based approach is found to be one of the useful approaches for
designing planning systems (Birnbaum et al., 1991). Currently rocket engine protection
consists of redline systems that issue an engine cutoff if measured value exceeds a pre-
determined operation limit for any of several par-meters (Millis, 1991). More recently efforts
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are being made to develop an advanced framework for a failure detection system with the
addition of model based algorithms (Hawman ct al., 1991).

In this paper, we develop a fuzzy case based reasoner that can help building such a
model from old cases and any existing domain knowledge. A detailed system description is
presented in this paper.

1. PROBLEM ST ATEMENT AND SUGGESTED APPROACH

In this system we develop a fuzzy case based rcasoner that can build a case
representation for several past anomalies detected, and develop case retricval methods that
can be used to index a relevant case when a new problem (case) is presented using fuzzy sets.
The choice of fuzzy sets is justified by the uncertain data. The new problem can be solved
using knowledge of the model along with the old cases. This system can then be used to
generalize the knowledge from previous cases and use this generalization to refine the
existing model definition. This in turn can help to detect failures using the model based
algorithms.

I11. SYSTEM DESCRIPTION

The proposed Fuzzy Case Based Reasoner (FCBR) is depicted as shown in the Figure

1.
Justifier
Leamer
- Case Base
Modificr
Storer
m—— Figure 1. Proposed Fuzzy Case Based Reasoner

A case is defined as an n-vector (vector of n dimensions from n sensors) with m
samples over a time window T seconds. This n by m matrix constitutes a case input to be
cither trained (learned) or decided (tested). This case definition allows a decision to be
generated or made every T data width of m samples. It is therefore possible to generate a
decision per sample interval AT = T/m. Butin general, to be practical, a multiple of AT say

<~
el




KAT with k << m can be used as the decision interval. We need to be sure that m samples

over T seconds is enough to model both the engine start-up and shut-down, and main stage
operation.

It is very difficult to give a definite relationship between data collected and ihe fanlt
occurring at a given time and at a specific location buczuse of many uncertainties. A

‘monotonic fuzzy number is modelled using time and sensor location for each case. This

modelling in discrete time space will be used in generating both training and testing cases. In
training, a fuzzy number from [0-1] is generated and associated with the data of an n by m
matrix. In the testing phase, we need 1o consider multiple decisions under different time
scales. When a new problem is given, we use FCBR 10 find the closest case from the previous
cases. We will predict the chances of failure at different future time periods and then propose
a general decision scheme for the given case from those predictions.

IV COMPONENTS OF FCBR

1) Retriever, Modifier, Justifier, Storer and Learner: In diagnostic design problems, case
retrieval should be done based on the qualitative description of the problem and the causal
relations in the explanation of the design solution. The indexing mechanism must also allow
cues to access cases at any Jevel of the representation using fuzzy set theorems. The criteria
that are used to evaluate whether a case is similar enough to the current design problem
should use the salient features of the domain. In the SSME problem, we must use the sensors’
data to evaluate the applicability of an old case for a new problem.

If the retrieved solution is not acceptable the Modifier tries to adapt and synthesize
different parts of the design into a solution using fuzzy sets. The Modifier can help us to
suggest the necessary changes to be made in the dynamic modelling of the failure. The
Justifier justifies the suggested solution.

The Storer stores the case. When a solution for a given problem is obtained it can be
stored in the case base for future retrieval. When a set of sensor data is diagnosed for failure
prediction, that data within the defined window (n by m matrix) must be stored in the case
base. The cases would be diagnosed based on some monotonic fuzzy number. This value
would define the chances of failure for that particular data set. Therefore, the cases are stored
using fuzzy set concepts. The Learner then develops generalized solution strategies from the
stored fuzzy cases. This is particularly important because of the enormous amount of data
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generated by the sensors. Therefore, we will develop generalization methods to take several
cases and represent them in some form of rules so that we can contain the size of th. case
base. -

V PRELIMINARY EXPERIMENTAL RESULTS

Some preliminary experiments are performed using the data from several sensors. In
particular, we selected 4 sensors and defined a fuzzy case based reasoning system.

1) Data sets selection

In general the cases are defined based on multiple sensors. QOur cumrent test .S
restricted to the problem of detecting faults in the HPFTP (High Pressure Fuel Turbopump).
Four sensors are selected and listed in the table 1.

ID PID NO. LABEL
1 7 MCC Pressure
-2 17 HPFT Discharge Temperature
3 77 MCC Hot Gas Injector Pressure A
4 78 MCC Coolz 't Discharge Temperature B

Table 1. SELECTED SENSOR FOR CASE STUDY

The data sets of test 902-457, 902-463, and 901-463 are used in our current
study. (Hawman et al., 1990) The tests 902-457, and 902-463 are two nominal data sets
with no shutdown. The test 901-436 was reported with having a problem of HPFTP
coolant liner buckle. It was shutdown due to a HPFT discharge temperature redline at t
= 611.035 seconds.

2) Case definition
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The sampling rate is defined as 0.04 which means T/0.04 samples are generated
in T seconds. A case is defined as the samples generated in T seconds. In particular this
is represented by a T x 4 vector. All the cases obtained from test 902-457 and 902-463
are considered to be safe. The cases obtained from test 901-436 has varying levels of
failure modes. In other words the cases collected well before the breakdown have a low
possibility of failure while those cases closer to the breakdown have a high possibility of
failure.

3. Normalization of the data

Since the value of sensors highly depends on the power level, a normalization
procedure corresponding to the power level is applied. The MCC pressure (MCC_PQC)is
proportional to the power level. It is used to define the measurement of power level.
The power level (LP(t) is defined as a ratio of MCC_PC value with predefined

standard MCC_PC value (MCC_PC_STAND), LP(t) = _______MCthCPCC_ PSC";SXND . The
Sensor Values(i,t) oo

corresponding sensors level CSL(,t) =~ oor stand() 2" be estimated by some

polynomial functions of power level ( PL(1) ) as follows:
CSLG.t) = CI*PL3(1) + C2*PL2(t) + C3*PL(1) + C4

The coefficients (C1, C2, C3, C4) are obtained based on the nominal test data 902-457
with linear regression rechnique. The Sensor_stand(i) is standard value of sensor i
which is predefined based on data from the nominal test 902-457 corresponding to the
predefined standard MCC_PC value. The normalized value of each sensor are computed
as follows:

1) = Sensor_Value(i,t)
norm(i,t) = Sensor_stand(i) * CSL(t)

[A]

For our defined case matrix A= % A=(.,,: ,

s =1 A, = (3, 8y, 83, - By) 5 @
A

normalized average percentage error (APERR) is defined as the case index.

4
APERR(t) = % 311.0 — enorm(i, 1}

i=1
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where

enorm(i,t) is average norm of sensor i within N data points

k=%
enorm(i,t) = —1- norm(i,t + kT)
N k=..L:.

N is number of samples within the window, T =0.04 is the sample rafc

The cases are grouped such that they are classified into one of the categories { high
risk, moderately risk, low risk and no risk). The cases are stored in a case base. The retrieval
from the case base is done using a hierarchical indexing. At the first level, we take the sample
and compute its APERR. There we will be retrieving all those cases with a similar APERR.
In the next step, we use a function defined on the first sensor data. The matching is continued
until we identify the group to which the sample belongs. After obtaining the group, we can
associate the possibility of breakdown with the new problem same as that of the identified
group. The grouping of different cases is shown in the Figures 2 and 3. This has been
identified as the primary index. With more sensors we expect to develop several such indexes
and also more categories of cases. We also want to compare the results with other methods.
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Figures 2. Grouping of cases in Breakdown and nonbreakdown daia

The methods proposed were presented in the context of specific sensor data set
analysis. The primary reason for this is to be able to compare recent performance (Hawman,
et al., 1990) of regression analysis and linear predictors to that of the fuzzy case based
reasoner. With adequate performance FCBR will be utilized as sensor models for several
other parameters deemed relevant by the 1990 sensor study (Carter et al., 1990). This will
enable the development of a fault detection system which would be less complex and more
accurate than previously proposed methods.

The application of these methods are not isolated to SSME data. Success in this study
implies wide ranging application to all engine monitoring Systumns.
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ABSTRACT

Database queries involving imprecise or fuzzy predicates are currently an evolving area of academic and

industrial research [Buc87,Bosc88,Prad87,Tah77,Uma83,Zem85). Such queries place severe stress on the

indexing and 1/O subsystems of conventional database environments since they involve the search of large

numbers of records. The Datacycle™ architecture and research prototype is a database environment that -

uses filtering technology to perform an efficient, exhaustive search of an entire database. It has recently

been modified to include fuzzy predicates in its query processing. The approach obviates the necd foe

complex index structures, provides unlimited query throughput, permits the use of ad-hoc fuzzy

membership functions and provides deterministic response time largely independent of query complexity and

load. This paper describes the Datacycle prototype implementation of fuzzy queries and some recent

performance results. -

1. Introduction “

In relational database systems [Codd70] databases contain tabular representations of information where rows
represent database records (tuples) and columns represent fields (attributes) within the records. Relational
algebra defines operations that can be carried out to specify particular query requests in which attribute
values and Boolean logic are used to identify sets of records of intérest. Structured Query Language (SQL)
is a query language that defines the grammar and the user interface between an application and the database
management system. In SQL, database data retrieval operations are defined in seiect statements of the form

Select attribute-list from relation where predicate

where the attribute-list identifies values to be returned to the user, relation identifies a particular table in the
database, and the predicate identifics a search criteria consisting of Boolean expressions involving attribute
names and values. One characteristic of these queries is that the user must be very familiar with the contents _
of the database, from both the perspective of structure, as well as the value range for particular atributes. NS
Mechanisms to introduce meaningful imprecise terms into the predicate such as young , old, high, and low S
do not exist. R

Fuzzy set theory [Zad65] has been proposed as one method for introducing imprecisc querics into database
systems. Efforts have been made to pre-process imprecise requests [Gala91],[East87] into a relaticaal query
language such as SQL or QUEL where a request for young employecs might be translated into a range
request for employees between the ages of 20 and 30.

Membership functions provide the method to translate an auribute value w0 a degree of membership in a : .
fuzzy set, referred 10 2s a possibility value. Figure 1 shows membership functions that map age valugs into . R
the fuzzy sets YOUNG, MIDDLE AGE and OLD. Ages less than 15 are definitely members of the sct ST
YOUNG and have possibility values equal to 1.0. For ages between 15 and 25, the degree of membership R

** Work was performed while the author was at Bellcore.
™ Datacycle is a trademark of Bellcore.
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in the set YOUNGHW from 1.0 to 0.0 indicating that ages closer 10 15 are "younger“ than ages ‘

closer 10 25. For ages beyond 25, the function YOUNG yiclds possibility values equal to 0.0 indicating
Mtovumagesmnotmunhusofd\equOUNG. :

MIDDLE
YOUNG AGE OLD
1.0
00 | 3
' 51015202530354045505560
Agein Years
FIGURE 1

Membership functions for YOUNG, MIDDLE AGE and OLD

A common approach in implementing fuzzy query capability is to utilize specialized database index
structures that associate records to fuzzy sets. The database index structures avoid the complexity of
executing the membership function against every tuple in the database during query processing. This
approach allows high-speed access for a predetermined number of fuzzy predicates. Arbitrary queries
involving derived data negate the use of the these index structures and force the run-time execution of
membership functions. This performance penalty is further impacted by the need to pesform set intersection
and union operations involving large sets.

The combined effects of these performance penalties make high performance fuzzy query systems difficuit 10
implement. While the index approach improves response time performance, it reduces flexibility by
limiting the user to a small number of pre-determined fuzzy sets. In contrast, 10 maximize query
flexibility, a run-time execution of membership functions that can be specified within the query grammar
is required. Using the Datacycle prototype, we have recently implemented a fuzzy query capability that
offers sub-second response time for large databases for a virtually unlimited number of concurrens users.
The approach permits the ad-hoc definition of membership functions in the query grammar, arbitrary use of
numenic attributes in the database, and high performance. .

The specification of the membership function at the grammar level coupled with the efficient run-time
execution of the membership function are major contributions of this work. These two characteristics
provide the primitives for adapting membership functions in either the database management system of
within the application. Thus, an adaptive feedback loop can easily be implemented to suppost various
leaming algorithms 1o adjust the membership functions over time to the underlying database, or to
accommodate shifting data. A second contribution of this work is the dynamic modification of membership
functions to permit their use over very different data attributes.

Section 2 presents the Datacycle architecture and details of the prototype implementation in the context of
the Datacycle project’s original goals ("crisp” query processing). Section 3 describes fuzzy query
extensions including the grammar and processing environment. Scction 4 introduces a method for
dynamically modifying the membership function to the underlying data during query exccution. Section 5
piovhEcs perfo mancs Mmeasurements from benchmarking activities. Section 6 identifies some future work
based oo thiz approach, iad Section 7 offers our conclusions.

2. The Datacycle™ Architecture and Research Prototype

The Datacycle architecture and research prototype {Her87,Bow91,Bow92] is a revolutionary apyproach to
database processing motivated by the need to provide both high performance and flexible data access in
single database system, This section describes the architecture and prototype in tesms of processing standard
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relational (crisp) queries. Section 3 then builds on the architecture description and characteristics to describe
our implementation of fuzzy queries.

In the Datacycle architecture, entire databases are beoadcast over high bandwidth communications facilities
wspwhlbedmwﬁnghuﬂwmwl]umpafmdwmpbxdmxhcﬁonmdwm
necessary to satisfy application data requests. The original objectives of the project to demonstrate
extreme transaction uumghpmm(wnsofdmndsofmadumsacﬁmspaswoud)inasysmmaho
supported high update throughput. While offering flexible access to the data, a number of advantages of
the filtering operation were largely unanticipated. The extension to include fuzzy query predicates is orc
example of the architecture’s flexibility.

From the perspective of the various applications accessing it, the Datacycle experimental rescarch prototype

as a single database server with an SQL-based interface. Applications interact with database contents
using ANSI SQL with the addition of some data manipulation primitives providing non-traditional
functionality. Database contents arc defined and managed solely in terms of the relational schema and the
values of attributes of individual tuples; no distinction between “indexed” and “non-indexed” attributes
exists. There are no indexes. The entire database is contens-addressable meaning that records can be
identified and retricved based on the content of any attribute or combination of attributes. Thaus, if a table
c;::;’m 15 numeric attributes, any one, or scveral of the 15 can be used in a predicate with no performance

ty.

The intemal Datacycle system model is depicted in Figure 2 and compriscs of an arbitrarily large number of
accwsmamgersacﬁngonasinglesuofshmeddauiwns. The entire set of daia items is maintained in a
central subsystem call the storage pump. Data items are made available 10 the many access Managers by
repetitive broadcast of the entire contents of the database. On-the-fly search of the broadcast stream is the
responsibility of custom VLSI datafilters within the access managers. Datafilters arc essentially application
specific microprocessors whose architecture and instruction set are optimized for synchronous, high speed
scarch. The presence of the entire contents of the database on the broadcast channel provides the

ity for direct selection of records based on the values of any attribute or combination of attributes,
eliminating the need to store and maintain indices. The broadcast communication media allows access
managers o be geographically distributed over wide areas. Database scaling is achieved using multiple

pumps and their associated communication and filtering subsystems.
Broadcast Media | \

Access Access Access
Mana, Manager Mana;

SQL SQL *SQL )
Internet )
sl s N

Application Application Application

FIGURE 2.
The Datacycle Architecture

The custom VLSI datafiliers have an instruction set that is optimized for Boolean comparison and
arithmetic primitives. The filters are. dual buffered devices allowing random access in the foreground buffer
while a subsequent record is filling the background buffer. Thus, at the record level, filtering is not stream
oriented. Thirty-two datafilier instructions can be executed while an individual record is present in the
buffer. A single instruction is sufficient to complete a 4-Byte comparison and mark a record for selection,
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associate it with a specific query, and initiate output. Complex, multi-predicate selections of several
independent selections can be performed simultancously within the filter within the 32 instruction
constraint. The datafilter instruction set includes arithmetic instructions that operate on integer data values.
The ability to caiculate numeric functions based on database contents provides the primitive operations
necessary to perform membership functions on-the-fly while data records are present in the filter.

In the Datacycle experimental research prototype, the storage pump is implemented in a 32 - 128 MByte
dual ported, banked RAM that allows the storage contents o be read sequentially for broadcast while
portions of the database are available for update operations. The memory contents are broadcast over a 32
bit wide communication channel at 53 MBytes per second. A 16 MByte database will appear on the
broadcast channel once every .3 seconds and the system will offer the user about 1 second response time for
selects against the database. A 32 MByte database provides storage for 256K 128 byie tuples.

The content-addressability and full database scan, coupled with the flexibility of the filtering operation
permit a variety of database selection operations that are particularly troublesome 1o conventional database
system approaches. In an Operator Services (telephony) application setting, we have included longitude and
latitude information for every customer in the database. Multi-dimensional range searches can be complesed
in a single broadcast cycle and spatial queries including CLOSEST (find the nearest object in the database)
can be dealt with in two passes (one to identify the object and a subsequent pass (0 retrieve it). The
CLOSEST function requires that a distance function be calculated on-the-fly within the filter. This
calculation is representative of a larger set of se’sction operations that perform arithmetic transformations
on one or more attributes. In conventional systems, these transformations often negate the advantages of
traditional database index structures forcing a full database scan requiring extensive processing and causing
extreme response time delays. In the Datacycle architecture, since a full database scan is always performed,
variations in query complexity are often handled in constant response time

3. Fuzzy Queries within the Datacycle Experimental Prototype
We have receatly completed an investigation of fuzzy query processing in the Datacycle architecture. Our
work has centered on storing crisp database values and applying fuzzy query predicates during selection -
opesations. Fuzzy requests define algorithmic membership functions that map the value of a database
attribute to a degree to which it meets a fuzzy predicate. Fuzzy selection predicates include imprecise
qualifiers such as near, high, old, best, 1all, eic. Several of these membership functions can be combined
using fuzzy logic to identify data objects that best meet a number of vague or imprecise selection
specifications. For example, a fuzzy database request may ask for circuits with a high signal-o-noise ratio
and a Jow maintenance history that terminate near a particular location . Such requests place a high degree
of stress on the indexing and 1/O operations in conventional database systems because they force the sysiem
to consider large numbers of tuples in a search to find an optimal, or some number of "best” matches. The
Datacycle filtering primitives can perform the efficient evaluation of membership functions and the fuzzy
logic necessary to combine them.

In the Datacycle prototype, we have chosen to utilize SQL exiensions based on fuzzy queries consistent
with previous fuzzy query grammars [Buc83,Kac89,Tah77, Zem85). We have extended the grammar 10
allow the dynamic definition of membership functions from the application level. .

Select * from R where att is qual an = attribute name
qual = fuzzy term

The extended SQL query to select all the records for individuals in the fuzzy set YOUNG would be:
Select * from R where age is YOUNG

The fuzzy term can be defined as a trapezoid as depicted in the general case in Figure 3. The breakpoints
{A,B,C.D) define the range (support) of the membership function. For cases other than the general case
we have chosen (0 use a strict positioning of variables and the use of nulls for unspecified parameters (e.g.
{..C.D}). Other more natural alternatives [Zem8S] for specifying these functions have been suggesied. We
chose this explicit notation to simplify parsing during query processing.
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We have implemented a library of commonly used membership functions parametesized by these trapesoid .
breakpoints. During query parsing, breakpoints are substituted for recognized fuzzy qualifiers. To facilitate
the ad-hoc definition of other fuzzy qualifiers, the breakpoints can be specified within the grammar. Thus
using the breakpoints {..15.25} instead of the fuzzy term YOUNG, the query to select entire record for all
the young individuals named Smith would be

Select * where name=smith and age is " 15,25}

General Case
{ABC.D]
{AB..}
]
AB €D AB
{ABBD)
c b AB D

FIGURE 3
Trapezoidal Membership Functions

The prototype supports multiple fuzzy predicates during a single selection and combines the resuits of
membership function calculations using standard fuzzy logic operators for fuzzy and, or and not
operations.

Select * where namessmith and age is YOUNG and height is TALL

Due to the characteristics of the current datafilter, membership functions are limited to piecewise linear
functions. The restriction is due to the lack of a moltiply instruction in the VLSI datafilter. Our
implementation uses repetitive addition to emulate a multiply instruction. The combination of multiple
membership functions with overlapping domains can be used to approximate slightly more complex
functions.

1.0 1

0.0 10 15 20 25
Select * where age is { » 1520} and age is { ,,10,25}

1.0 —
~
~

| | AY |
0.0 015 20 25
Select * where age is { ,15,20)_or age is { ,10,25}

The selection process permits both hardware and combined hardware-software filtering. The VLSI datafilier
has the responsibility of reducing the amount of information presented on the high bandwidth channel 10 an
1/O bandwidth the downstream database processing environment can manage. Where possible, it is usually
advantageous to complete this filtering operation in the VLSI datafilter. Where the complexity of the
request exceeds the capability of the datafiltcr, a partial predicate, or an approximation can be used in the

500



datafilter, and the downstream software can complete the predicate or apply a precise operation. For
instance, we have approximated a distance function in the datafilter with an approximation nyshl-blyi
For some applications, this is sufficient. We use this distance calculation in a fuzzy near predicate. For
those applications requiring a precise distance function, the approximation can yicld a superset of the answer
set, and downstream software can apply a Euclidean distance fmcnouloxdenufyemectwpluoracomct
ordering of tuples. This lechmque achieves greater flexibility and permits applications where the selection
predlcates exceed the capacity or primitives of the VLSI datafilter. Using this technique it is ;)ossnblc to
approximate non-linear functions with piecewise linear functions, and subsequently apply the precise non-
linear function in software outside the datafilter.

4. Dynamic Fuzzy Queries

* One problem with a static predefinition of membership functions (i.e. YOUNG is less than age 25) is that
the binding may make sease relative to the domain of the attribute in gencral (over all age groups), but for
specific cases, may make no sense at all. For instance, suppose we were to apply the fuzzy predicate
YOUNG as defined in Figure 1 to either elementary school children or nursing home adults. The definition
is totally inappropriate. To partially overcome this shortcoming, we have implemented a dynamic fuzzy
predicate which defines the membership function in terms of statistics and dynamically adjusts the function
to the domain of the predicate. In this case YOUNG is defined in terms of percentiles of the domain space
and interpreted as definitely young in the first 10th percentile, decreasing in membership value for the 10-
20th percentile and not YOUNG beyond the 20th percentile. When applied to the domain of the predicate,
the membership function is scaled appropriately as depicted in Figure 4. In the case of the current Datacycle
prototype, the domain can be obtained by simply determining the maximum and minimum values of an
attribute given additional predicate constraints (elementary school or nursing home). This can be
accomplished by observing the data stream on a single cycle prior to the actual fuzzy selection. Using
multiple filters or additional cycles, data distributions can be obtained if severe data skew is present and
needs to be taken into consideration. The select statements indicated in Figure 4 show the extended SQL for
the dynamically scaled requests. This approach does not create membership functions as in [Kam90], but
rather, transforms “existing” membership functions to different populations.

1.0
I Suatistical Definition
of YOUNG
1
|
0.0
5 10 15 20
Percentage of Attribute Domain
Domain of Dynamic Scaling ) .
Elementary . . Domain of Nursing
School Ages /DU Query Processing Home Ages
- 4 >
Age in Years

select where age RIS YOUNG and group=elementary
select where age RIS YOUNG and group=nursing

Figure 4
Dynamic Fuzzy Query Processing
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§. Performance

We have generated a modest test database of 256,000 tuples (32 Megabytes) 1o exercise the fuzzy query
functhnalitymdpopuhwdsevemlamibnmwiﬂ\muicdau mWowtypcmnhandlelarge:dam
wimlineardegmdationinmspmseﬁme(mmseﬁmeislargelyafuncﬁm of database broadcast cycle
ﬁnw).'melugmdatabasewecanhmdlcmourcmmmmhpmmpeis 128 Megabytes in a single
Datacycle pump; sufficient storage 10 deal with 1 million 128 byte tuples because the storage requirements
donotwquiwaddiﬁonalspaceforindaw. lmgetdaabasesrequitepaniﬁoningﬂwdambseovamnniple
pumps and utilizing multiple filters. This same approach is used o reduce the cycle time of databases ©

i the system for faster response time. We have demmsualcd the on-the-fly calculaljon of two

executed against the datastream 10 retrieve the “best” n tuples. Cusrently we select up 1o the best 50
mdsbecunewecanspecifyﬂwselecﬁmofupmﬂspecifwmordsmasinglecycle,mduwmaxofso
fits well in two cycles. The two cycle limit was chosen arbitrarily, the architecture can easily support the
selection of any number of records.

Figure 5 provides mmﬁmmdﬂnmghwmhsfmfmyscmionquuiwaminammﬁﬁm
database sizes (256K, 128K and 64K wples). Since the system scales throughput lineasly with the addition
of filtering subsystems, query pmcessingsyswnscanbeoonsmmd 10 deal with arbitrarily large numbers
of fuzzy queries. Figure 5 indicates the query throughput (queries per second) for a single filter. For non-
fuzzy queries we have attained query throughputs exceeding 25 queries per second for a single filter for
64,000 lupkm.mnsﬂwh\dimdmﬂwmpm\seﬁmcislargelydemm by the cycle time,
as is the query throughput. Response times fmmmll(&l(mplc)dambasesmnbeaslowas 5 seconds
with the full ad-hoc capability. A second result is indicated by the iwo 64K tple curves and shows that
both response time and throughput can be largely independent of complexity. The two predicate curve

. .

represents processing a selection based on two fuzzy membership functions operating on different attributes
(SELECT WHERE NAME=LEE AND HEIGHT IS TALL AND AGE IS YOUNG) and the combination
of their results with fuzzy logic operators. Notice that at low concurrency (1-3 queries per second), the
response time is nearly idemiallolhesingleam‘uueptedm. Thexesponsedmerepmemsﬂwzime
necessary 1o receive an extended SQL request, passc and compile it, load the datafilter instruction buffer,
evaluate every record in the database, sort the resulting possibility valucs, select individual records on a
subsequent cycle, move records into a private workspace (buffer) in the data management process and notify
the application of number of records selected. The timing of subsequent record feich operations is not
included. Relative (RIS) «, :ery processing adds an additional broadcast cycle to the processing to collect
statistics for scaling and marginally impacts performance.

These results, coupled with our ex sences with non-fuzzy query processing Icad us to the conclusion that
with multiple filters and multiple broadcast streams, we can achieve sub-second response time for
reasonably large databases (100s MByte to Gigabyte), complex queries, and high levels of query throughput
(100s per second) inadalabasemvixomm\tmatmheshmdby many diverse applications, including ad-

.

hoc fuzzy quernes.
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Figure §
Fuzzy Query Performance - Single Fiiter
Select * where Name=Lee and height is tall

6. Future Work

Our work to date has centered around prototyping basic query funciionality and implementing the dynamic
fuzzy query capability. The full database search and content-addressability characteristics of the Datacycle
architecture make it particularly attractive for a number of further extensions.

alulti-dimensional memberskip fanctions

Membership functions involving more that one attribute can be dealt with efficiently as a small change o
the system since the values of all the tuple’s attributes are available during the run-time evaluation of a
membership function. Thus planar surfaces defined as Z = ¢1X + c2Y + ¢3 are a possible aliemative to
lattice functions. Using multiple datafiliers, multiple intersecting pianes such as those depicted in Figure 6
are possible. We are particularly interested in spatial and directional issues such as north and the
combination of direction and distance.

Hedges

A mechanism for modifying membership functions with standard hedge (Zad72] terms as very and
somewhat needs to be addressed. These operators typically involve applying non-linear functions like the
square or square-root of a membership value. These operators may be approximated using piecewise lincar
functions.

Concurrency Control in & Fuzzy Transaction Processing Environment

The Datacycle architecture and research prototype includes the implementation of a full transaction model to
guarantee database consistency and query correctness in the face of concurrent transaction execution. The
implementation includes optimistic concurrency control and a predicate based conflict detection algosithm
that may prove advantageous in identifying conflicts between fuzzy transactions where standard record based
locking schemes muy be inappropriate. Relaxing strict concurrency control serialization requirements by
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using various forms of flexible transactions is an active area of current research in the database community.
The notion of low and high conflicts in read/writeset intersections could utilize a mechanism to evaluate sct
intersections in a fuzzy domain. Oneappmachcanbeuxeuseofathrcsho:dlolinitinwsecﬁonswonly
ﬂmﬂmexcwdawtainlcvdof"conﬂict'. IntheDaiacyclccawWyconuolmechalium.miscouui
easily be implemented for transactions involving readsets that include fuzzy peedicates by re-executing
readsets against the log of database change activity coupled with a threshold set toa particular conflict level.
Thus, only a subset of the conflicts would be identified during the optimistic concurrency control conflict
detection phase, and only those that represeat high degrees of conflict.

NORT'}

Figure 6
Two Dimensional membership Functions
North = F(Alongitude, Alatitude)

Complex Non-Linear Membership Faunctions

We are currently investigating the use of high performance digital signal processors (DSPs) for use instead
of the custom VLSI datafilter. These processors include support for floating point and multiply
instructions in as little as 40 nanoseconds. This is especially important since the current VLSI datafilter
prototype lacks a multiply instruction. The usc of DSPs could permit a significant increase in the
complexity of membership functions that are executed on-the-fly.

Learning

We have speculated that the combination of on-the-fly membership function execution and membership
function definition at the query grammar level provide the primitives for an adaptive feedback mechanism
and eventually leaming.

7. Conclusion

The combination of the Datacycle architecture’s full database broadcast and efficient filicring can be used for
both simple and complex database selection operations. This flexibility permits various applications to
share a common database while requiring very diffarent views of the data (full content-addressability), or
permit a user 10 process searches beyond the capabilities of current databasc management systems. The
work reported in this paper resulted in a fuzzy query capability in a high volume query processing
environment. The major contributions of this work include a scatable query environment for fuzzy querics
against small to medium size databases (low-order gigabyte), the use of on-the-fly membership function
execution that permits ad-hoc fuzzy queries, and the definition and implementation of dynamic fuzzy queries
that adjust a statistical membership function to the attribute domain.
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Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which- genetic
algorithms (GAs) are used to augment fuzzy logic controllers (FLCs). GAs are search algorithms that rapidly locate
near-optimum solutioas to a wide spectrum of problems by modeling the search procedures of patural genetics.
FLCs are rule based systems that efficiently manipulate a problem enviroament by modeling the “rule-of-thumb”
strategy used in human decision making. Together, GAs and FLCs possess the capabilities necessary to produce

, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a
control element to manipulate the problem environment, an analysis element to rocognize changes in the problem
environment, and a learning element to adjust fuzzy membership functions in response to the changes ia the
problem environmeat. Details of an overall adaptive control system are discussed. A specific computer-simulated
chemical system is used to demonstrate the ideas preseated.

iNTRODUCTION

The need for efficient process control has never teen more important than it is today because of economic stresses
forced on industry by processes of increased complexity and by intense competition in a worid market, No industry
is immune to the cost savings necessary {0 remain competitive; even traditional industries such as mineral processing
(Kelly and Spottiswood, 1982), chemical engineering (Fogler, 1986), and wastewater treatrient (Gottinger, 1991)
have been forced to implement cost-cutting measures. Cost-cutting generally requires the implementation of
emerging techniques that are often more complex than established procedures. The new processes that result are
often characterized by rapidly changing process dynamics. Such systems prove difficuit to control with conventional
strategies, because these strategies lack an effective means of adapting to change. Furthermore, the mathematical
tools employed for process control can be unduly compler even for simple systems.

In order to 2ccommodate changing process dynamics yet avoid sluggish response times, adaptive control systems
must alter their control strategies according to the current state of the process. Modern technology in the form of
high-speed computers and artificial intelligence (Al) has opened the door for the development of control systems
that adopt the approach to adaptive control used by humans, and perform more efficiently and with more flexitility
than conveational control systems. Two powerful tools for adaptive control that have emerged from the field of
Al are fuzzy logic (Zadeh, 1973) and genetic algorithms (GAs) (Goldberg, 1989).

The U.S. Bureau of Mines has developed an approach to the design of adaptive control systems, based on GAs and
FLCs, that is effective in problem environments with rapidly changing dynamics. Additionally, the resulting
controllers include a mechanism for handling inadequate feedback about the statc or condition of the problem
environment. Such controllers are more suitable than past contcol systems for recognizing, quantifying, and
adapting to changes in the problem environment.

The adaptive control systems developed at the Burean of Mines consist of a comtrol element to manipulate the
problem environment, an analysis element to recognize changes in the problem environment, and a learning element
to adjust ¢ the changes in the problem environment. Each component employs a GA, a FLC, -r both, and each

’
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is described in this paper. A particular problem eavironment, a computer-simulated chemical system, serves as a
forum for presenting the details of an adaptive controller being developed by the Bureau. Preliminary results are
preseated to demonstrate the effectiveness of a GA-based FLC for each of the three individual elemeats.

PROBLEM ENVIRONMENT

In this section, a computer-simulated chemical system is introduced to serve as a forum for presenting the details
of a stand-alone, comprehensive, adaptive controller being developed at the U.S. Bureau of Mines; emphasis is on
the method not the application. The chemical system consists of a continuous stirred tank resctor in which ammonia
" and formaldehyde are mixed to produce hexamine and water. Since the reaction is exothermic, a heat exchanger
is included to limit the temperature in the reactor. A schematic of the physical system is shown in Figure 1.

{24

Figure 1.~A schematic of the hexamine system.

A mathematical model used in this research employs the approach described by Kermode and Stevens (1965).
Specifically, the system is modelled with the following set of equations:

Energy Balance
4,0C, T + 4s0C,Tp - (@4 * 4PPC,Tus + H-AHIV - UAAT, = vpc,%'
Mass Balances
9Cu- @+ 99C, -1V = Vf%
QCrn - @, + q)Cp - 151V = V%
Heat of reaction

-AH = 16610 +« 12T, - 293.2)
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Rate of reaction

r = kCC/

where q reprecents the volumetric flow rates (/s), C is the concentration (moles/l), r is the rate of reaction (moles
of apimonia/l 8), V is the volume of the reactor (tank) (1), T is temperature (°K), AH is the heat of reaction (cal/gm
mole), U is the heat transfer coefficient (cal/icm? K s), AT, is the mean temperature difference for heat transfer in
the heat exchanger (and is a function of the volumetric flow rate of water through the heat exchanger, q,), and k
is the rate of reaction constant (I*/mole? s) givea by:

=
k = 1420se T

and the subscripts (A and F) indicate the ammonia and formaldehyde whereas the subscript i represents material
entering the reactor. The assumptions associated with this model include perfect mixing in the reactor, no heat
losses, all physical properties the same as water, and a third-order, irreversible reaction.

A reactor having a volume of 92.4 1 was simulated. The inflows of ammonia and formaldehyde, respectively, were
allowed to reach maximum values of 1.885 U/s, while the maximum flow rate of the heat exchanger was 1.2 I/s.
The objective of the control problem is two-iold: (1) to develop a FLC capable of maintaining a desired reactor
temperature in response to changes in the flow rate of formaldehyde and (2) to maximize the production of hexamine
while minimizing the waste in the amount of reactants used. The amount of water produced was deemed
inconsequential to the control strategy. In this research, the desired reactor temperature is 315.0 °K. Furthermore,
a constraint is placed on the amount the valves controlling the inflow of ammonia can be opened or closed during
a given time step. The maximum rate at which the flow of ammonia can be changed is 0.188S I/s/s. This
constraint is enforced to limit transients in the system.

The hexamine system, as it has been described to this point, provides a challenging control problem, due mainly
to the nonlinearity present in the rate of reaction. Itisa non-trivial task to maintain the temperature in the reactor
for various forcing functions (as defined by the rate at which the formaldehyde enters the reactor), much less to
ensure the process proceeds efficiently (maximum hexamine production with minimal waste in ammonia and
formaldehyde). However, yet another complication is now introduced: the concentration of the reactants (the
ammonia and the formaldehyde) can be altered randomly. Furthermore, there is no mechanism in place for
providing the controller with feedback concerning the nature of these changes. Thus, an efficient control system
must be able to recognize when the hexamine system has been altered (whea the conceatration of the reactants are
changed), it must be able to determine the new values of the concentrations, and it must be able to alter its control
strategy in response to the changes; an adaptive control system is needed.

STRUCTURE OF THE ADAPTIVE CONTROLLER

Figure 2 shows a schematic of the Bureau’s adaptive control system. The heart of this control system is the loop
consisting of the control element and the problem environment. The control element receives information from
sensors in the problem environment concerning the status of the condition variables, i.e., Qa, Q5. Gy, a0d Ty It
then computes a desirable state for a set of action variables, i.e., flow rate of ammonia (q,) and flow rate of water
through the heat exchanger (q,). These changes in the action variables force the problem environment toward the
setpoint (T, = 315.0° K. This is the basic approach adopted for the design of virtually any closed loop control
system, and in and of itself includes no mechanism for adaptive control.




Problem i
Environment %

Control

3B Element

updated
perameters

Learning
Element

now velwes of
suvironmental
parameters

Analysis
Element

Figure 2.~Structure of the adapfive control system.

The adaptive capabilities of the system shown in Fig. 2 are due to the analysis and leaming elements. In general,
the analysis element must recognize when a change in the problem environment hes occurred. A “change,” as it
is used here, coasists of a change to the concentrstion of either of the reactants. The analysis element uses
information concerning the condition and action variables over some finite time period to recognize changes in the
eavironment and to compute the new performance characteristics associated with these changes.

The new environment (the problem environment with the altered parameters) can pose many difficulties for the
control element, because the control element is no longer manipulating the eavironment for which it was designed.
Therefore, the algorithm that drives the control element must be dltered. As shown in the schematic of Fig. 2, this
task is accomplished by the learning element. The most efficient approach for the learning elemeat to use to alter
the control element is to utilize information conceming the past performance of the control system. The strategy
used by the control, analysis, and learning elements of the stand-alone, comprehensive adaptive controller being
developed by the U.S. Bureau of Mines is provided in the following sections.

Control Element

The control element receives feedback from the hexamine system, and based on the cusrent state of q,, G5, q., And
T, must prescribe appropriate values of q, and q,. Any of a number of closed-loop controllers couid be used
for this element. However, because of the flexibility needed in the control system as a whole, a FLC is employed.
Like conventional rule-based systems, FLCs use a set of production rules which are of the form:

IF {condition} THEN {action}

to arrive at appropriate control actions. The left-hand-side of the rules (the condition side) consists of combinations
of the controlled variables (qas Gr» Qu» and T); the right-hand-side of the rules (the action side) consists of
combinations of the manipulated variables (q, and g,). Unlike conventional expert systems, FLCs use rules that
utilize fuzzy terms like those appearing in human rules-of-thumb. For example, a valid rule for a FLC used 1o
manipulate the hexamine system is:
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“IF {q,isVH'mdq,isVLandq,isLde“ is VH}
THEN {q, is NB and q, is PB}.

The fuzzy terms are subjective; they mean different things to different "experts,” and can mean different things in

varying situations. Fuzzy terms are assigned concrete meaning via fuzzy membership functions (Zadeh, 1973).

The membership functions used in the control element to describe ammonia flow rate appear in Fig. 3. (As will
be seen shortly, the learning element is capable of changing these membership functions in response to changes in
the problem environment.) These membership functions are used in conjunction with the rule set to prescribe
_ single,.crisp values of the action variables (g, and q,). Unlike conventional expert systems, FLCs sllow for the
enactment of more than one rule at any given time. The single crisp action is computed using a weighted averaging
technique that incorporates both a min-max operator and the center-of-area method (Karr, 1991). The following ’
fuzzy terms were used, and therefore »defined” with membership functions, to describe the significant variablzs in -
the hexamiue system:

q.  Very Low (VL), Low (L), Medium (M), High (H), Very High (VH)
g Low (L), Melium (M), High (H), Very High (VH) -
q. Low (L), Medium (M), High (H) -
T Very Low (VL), Low (L), Medium (M), High (H), Very High (VH)
q, Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero (Z),

Positive Small (PS), Positive Medium (PM), Positive Big (PB)
qa  Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero (Z),

Positive Small (PS), Positive Medium (PM), Positive Big (PB).

1
a2
£
§
27
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- 3
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b4
z -
g 2r
Q
0 1 A ' ,,/’/ v
-.001 ~-SE-D4 0 SE-04 001 ’

Ammonia flow rate (1/s)

Figure 3.~Fuzzy membership functions for the flow rate of ammonia.

An effective FLC for manipulating the hexamine system can be written that contains 300 rules, if the random
changes to the concentrations of the reactants are neglected. The 300 rules are necessary because there are five
fuzzy terms describing T, five fuzzy terms describing q,, four fuzzy terms describing gy, and three fuzzy terms
describing q., (5*5*4*3=300 rules to describe all possible combinations that could exist in the hexamine system
nsdesuibedbytheﬁluytemmwdby the membership functions selected). Now, the rules selected for the
control element are certainly inadequate to coatrol the full-scale hexamine system; the one that includes the changing
concentrations. However, the performance of a FLC can be dramatically altered by changing the membership
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functions. This is equivalent to changing the definition of the terms used to describe the variables being considered
by the controller.” As will be seen shortly, GAs are powerful tools capable of rapidly locating efficient fuzzy
membership functions that allow the controller to accommodate changes in the concentrations of the reactants.

Analysis Element

The analysis element recognizes changes in parameters associated with the problem environment not taken into
account by the rules used in the control element. In the hexamine system, these parameters are the concentration
of the two reactants. Changes to the concentrations dramatically alter the way in which the bexamine system
responds to control actions, thus forming a new problem eavironment requiring an altered control strategy. Recall
that the FLC used for the control element presented includes none of these parameters in its 300 rules. Therefore,
some mechanism for altering the prescribed actions must be included in the control system. But before the conirol
element can be altered, the control system must recognize that the problem environment has changed, and compute
the nature and magnitude of the changes.

The analysis element recognizes changes in the system parameters by comparing the response of the system being
controlled to the response of a model of the hexamine system. In general, recognizing changes in the parameters
associated with the problem environment requires the control system to store information conceming the past
performance of the problem environment. This information is most effectively acquired through cither a data base
or a computer model. Storing such an extensive data base can be cumbersome and requires extensive computer
memory. Fortunately, the dynamics of the hexamine system are well understood. In the approach adopted here,
a computer model predicts the response of the hexamine system being controlied. This predicted response is
compared to the response of the system being controlled. When the two responses differ by a threshold amount over
a finite period of time, the hexamine system is considered to have been altered. .

When the above approach is adopted, the problem of computing the new system parameters becomes a curve fitting
problem (Karr, Stanley, and Scheiner, 1991). The parameters associated with the computer model produce s
particular response to changes in the action varidbles. The parameters must be selected so that the response of the
model matches the response of the problem environment. '

An analysis element has been forged in which a GA is used to compute the values of the parameters associated with
the hexamine system. When employing a GA in a search problem, there are basically two decisions that must be
made: (1) how to code the parameters as bit sizings and (2) how to evaluate the merit of each string (the fitness
function must be defined). The GA used in the analysis element employs concatenated, mapped, unsigned binary
coding (Karr and Gentry, 1992). The bit-strings produced by this coding strategy were of length 16: the first **
bits of the strings were used to represent the concentration of the ammonia and the second 8 bits were used to
represent the concentration of the formaldehyde. The 8 bits associated with each individual parametes were read
as a binary number, converted to decimal numbers (000 = 0, 001 = 1, 010 = 2, 011 = 3, etc.,), and mapped
between minimum and maximum values according to the following:

b
-1

C=Cy + (Coe - Co) Q)

where C is the value of the parameter in question, b is the biaary value, m is the number of bits uscd to represent
thepanicuhtpanmer(S),andC_hmdc_nreminimumandmaximumvaluesassocinedwithachmmem
that is being coded.

A fitness function has been employed that represents the quality of each bit-string; it provides a quantitative

evaluation of how accurately the response of a model using the new model parameters matches the response of the
system being controlled. The fitness function used in this application is:
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With this definition of the fitness function, the problem becomes a minimization problem: the GA must minimize
f, which as it has been defined, represents the difference between the response predicted by the model and the
response of the system being controlled.

18
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Figure 4.—-A GA is able to compute the concentrations of the reactants.

Figure 4 demonstrates the ability of @ GA to select the appropriate parameters associated with the problem
environment. A GA is able to reduce the difference between the response of the hexamine system being controlled,
and the response of the hexamine system predicted by the model virtally to zeso after only 150 function
evaluations. Once new parameters (and thus the new response characteristics of the problem eavironment) have been
determined, the adaptive element must alter the control element.

ing Element

The learning element alters the control element in response to changes in the problem ervironment. 't does so by
altering the membership functions employed by tiie FLC of the control element. Since none of the rancomly aitered
parameters appear in the FLC rule set, the only way to account for these conditions (outside of completely
revamping the system) is to alter the: membership functions employed by the FLC. These alterations consist of
changing both the position and location of the trapezoids used to define the fuzzy terms.

Altering the membership fuactions (the definition of the fuzzy terms in the rule set) is consistent with the way
humans control complex systems. Quite oftea, the rules-of-thumb humans use to manipulate a problem eavironment
remain the same despite even dranmtic changes to that environment; only the conditions under which the rules are
applied are altered. This is basically the approach that is being taken when the fuzzy membership functions are
altered.

The U.S. Bureau of Mines uses 2 GA to alter the membership functions associated with FLCs, and this technique

has been well documented (Karr, 1991). A learning element that utilizes a GA to locate high-efficiency membership
functions for the dynamic hexamine system has been designed and implemented.
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The performance of a control system that uses 8 GA to alter the membership functions of its canmlelemeni i'sv
" demonstrated for the situation in which the concentrations of both reactants are altered. Figure S compares the

performance of the adaptive control system (one that changes its membership functions in response to changes in

the system parameters) to a non-adaptive control system (one that ignores the changes in the system parameters).
In this figure, the concentrations of both reactants have been altered 510 seconds into the simulation. In this case,
not only is the adaptive controller able to better maintain the desired tank temperature, but it also prescribes control
actions that allow for the production of more hexamine.

318
37
< e
313
314

313

Temperature (°

2

311

310

Figure 5.—-The adaptive controller is much more efficient.

SUMMARY
Scientists at the U.S. Bureau of Mines have developed an Al-based strategy for adaptive process control. This
strategy uses GAs to fashion three components necessary for a robust, comprehensive adaptive process control
system: (1) a control element to manipulate the problem eavironment, (2) an analysis element to recognize changes
in the problem environment, and (3) a leaming element to adjust to changes in the problem environment. The
application of this strategy to a computer-simulated hexamine system has been described.
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Abstract

‘nu'oughpeviouswork.afmyconuolsystemwaséevebpedmpufmnmslaﬁmalandmuﬁmalconublof
aspacevehicle.Thismoumwasmenmxmnhedmmmhwdweffwﬁvmofgmicalgoﬁmmsmﬁnc
nnﬁngthecmmlbt.m'mmaexphimdwpmblmmdawdwimmedwgnofmkfuzzycoumllerand
oﬁmamhniquefornnﬂnxfuzzylogiceonuollas. ’

Aﬁazylogicconuoﬂuisamle—basedsystemmatusufmylinguisﬁc.variabhsmmoddhmnmlz-of-
mmbapptoachumeonudacdonswithinagivensymnis'ﬁmyexmsym' features rules that direct
thedecisionpmcasandmembushipﬁmcﬁonsmaconvmtheliuguisﬁc variables into the precise numeric
values used for system coatrol {7].

Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One
singlcchangeinmemembushipﬁmﬁonscouldsi i yaltenhepufomanceofmecoumuet.'l‘his
mmmmeummwmgammmewuummmb
fmctionscmtingaMgﬂynmdmmﬂa.%mowhmummmingmﬂmukwamdwof
knowledge from human experts. ’

Inadums!mndevelopnmtﬁme.anitmﬁvep:medmfmalming the membership functions (o create a

, nmedsetMusedaminimlamomtoffnel for velocity vector approach and station-keep mancuvers was

deubpeiGmeﬁcdgaidmasamhmhﬂqmusdfaopﬁminﬁm.wsdwmdumPudwmlwuﬁs
problem.

1. PREVIOUS WORK

Apreviouseﬁ'oninmeSoﬁmTechmbgyLabaNASMolmonSpaceCmuwasdirecwdwwdsauﬁng
a control system that reacted similarly to a pilot in the execution of rendezvous profiles (3}, (discussed later in
section l.l).nwaswaliudthatamodelofamanﬂyingthemshnnlcco\ﬂdbedevelopedbyanowingthe
sysemnp'omsaﬂyinfmﬁmmmemw had available. Such a system would demonstrate feasibility of
uﬁlizingfmyemmlkxsfawm\mdmdczvmopuammfummmisﬁm

1.1 SCENARIO

An automated six degree of freedom (6-DOF) fuzzy controller was developed {4] that performs four major
umshﬁoualoonuolsegnenlsassmwninﬁgmé 1 l)mwhmdwmumuvebchym,Z)the
approachtolhemaonmemdialvecmr.B)wgemy-mmdalagivenmnge.MQmmMing.wm
conmmposiﬁw:ehﬁvemdwmetismainumed.mcontrolletconuolstheclosingmmdmhdve
mmdmmmmmmmmmummmmmmmmm
mﬂemgememmlahngﬁ&mmmwgdwehvaﬁmmdaﬁmmhmglcam.mmm
operationwquhudwmgembecm&hmpmmbemm.andﬂwzimhmminmgm
tobezero.mﬂy-ammdopemimﬁomuwvcbcityvecmwthemgﬂiveradialvmtequhumaimﬁnm
constant range, elevation and azimuth angles. In figure 1D, the clevation and azimuth angles are being
maintained at 2e10.
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Figure lnshowsmevdodtyvmwwh.wmmwnnlew from 400 feet 10 50 feet from the
targctond:evdocityvecmt.mﬁniuhgmemguinmeccmuofmeﬁeldofviewofuowopﬁw
AlignmemSighﬁng(COAS)deviee.assbowninﬁgm 1A. Figure 1C shows the radial vector approach, where
u\eshuuleappmaduﬁunworeubelowmemummfeabebwmemonthemdialmm.ﬂmagain,
meshunlcmainninsmctatgetinlhemmofuwCOAS field of view. Figure 1D shows the fly-around from
meveloci:yveaoraxis:omenegaﬁvemdialvecuxaxis.maimainingamgemdiusofzooreetduringme
n-ansitioul.mdstaﬁonkeepingamreuonmemdialveunr.minminingposiﬁonandmimdc after reaching
the desired radial vector position.

GY

Target
50fu
R,_bar axis ! R _bar axis
400 ft
®) © D)

Figure 1: Automated Rendezvous System

2. CURRENT WORK

’meuanslzimalmzzycoumlsymismdmgamwtmdcmmﬂumnmdssommmmgeand
range rate arc maintained during proximity operations. Typicaily, a shutde pilot provides these inputs and
cmuolsd:emlaﬁvemjectory.‘l‘hm.theﬁmylogicmdconuolsymmsimmamﬂwmwinpmviame
transiational hand controller (3].

Inevaluaingmepafmmmeofmefuzzyemuolbr,fmlconsemﬁmwasmofmemaincriwﬁauwd.m

shunlef':i;hxszxepomdt‘orpoundsym:s. i.e., for every pound of on-orbit fuel conserved, an equal amount of
increase in the payload capacity results.

During the turing of the controller, the membership functions were altered manually w improve the control
straegy. Defining the fuzzy m i fmﬂimisannmﬁmecmmningaspectom\econmnerd&dgn.
One singie change in the membership functions significantly altered the pesformance of the controller. This
mcmbushiffnmﬁmdcﬁmdu\mmmpﬁshedby using trial and error techniques.

In order to shorten development time, an i(erativepmoedutewasdevelopedforaluingmembexship functions
wmteannwdsettbatreducedmcamoumofﬁnel for velocity vector approach and station-keep mancuvers.
Genetic algorithms, a search wchniqwuwdforopﬁmimﬁomisthemahoduwdmmmmcﬂwﬁnc—wningof
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the membership functions in order to minimize fuel consumption. Figaee 2 shows the final range pasameters

NL NAVAT éé PL
2 0 2

PL

1 s -2 0 123 1
‘ Commanded D v (feet/sec)

Figure 2: Range Parameters Membership Functions Set

Membership Functions Constraints

A chromosome string which consists of 38 points defined the range and raage rate membership functions. The
fitness function regulsted the membership functions points 1o float alomg the universe of discourse within
certain constraints. Figure 3 shows the labeled points. An example of the constraints algorithm placed on the
individual points are as follows: The positive large (PL) veniex for range, kabeled 3, is constrained 0 a value
between the vertex of the positive medium membership fuaction and the maximum value of the universe of
discourse. The positive medium (PM) vertex for range, labeled 2, is constrained (0 a value between the vertex of
the positive small (PS) membership function and the maximum value of the universe of discourse. The points
labeled 4, 5, and 6 also follow this algorithm. The right leg of the positive medium membership function,
labeled 13, is constrained 1o a value between the veriex of the positive medium membership function and the
maximum value of the universe of discourse. The leg of the positive large membership function, labeled 12, is
constrained t0 a value between the veriex of the zero membership function and the veriex of the positive large
membership function. The points labeled 9, 10, 14, 15, 16, 17, and 18 also follow this algorithm. The
points labeled 0, 7, 8, are fixed at zero and are not allowed to float. The membership functions for the range rase
parameters are symmetric and follow the same algorithm for this approach.

517




18 1716 1514 738 910 112 13
. Range

Range Rate

Figure 3: Selected Points

Figm4§nmmeﬁmﬁmﬁmwofdwgewicdgomhmwmmmwecﬁmm1hembegim

: wimmldomgmﬁonofapopulaﬁonofSOsuings(dmmsom).eachonengm190bits.Eachnumliz.ed

_ pointwasgiveuaSbnmluﬁonmddemdedxeordingmmemmnmdncﬁbedmwchwe

represents a possible solution to the problem of finding a set of highly efficient membership functions (with

mpecttofne!cousmnpﬁon).Eachot‘mchmnowmwhichisabinaxysuing.isdecodedtoyicldthe

- o mmmmwmummmommomsmm(m

61 (&mswdhmmdeﬁlmammkw).wmmmm“mmmemhymmm

mmmmwmpwmwmzmmmammmmmw

Masignedam(aﬁmﬁmcﬁmvalm).matisamnegaﬁvemofrehﬁvumh.rqu'mgme

X degree to which they accomplish the goal of defining the high-performance fuzzy controller. The control

v pmmnemﬁwlandﬁm.forboduheapplwhmmuvermdsuﬁmkeeping,weusedmmignuﬁsmas

o shownineqnation(l).Thosechmmosomeswimahighﬁmvaluemmedbydteeqnaﬁoumgivena
propmﬁmmlyhighamobabﬂkyfasemdmgmemmmﬁonphm.

Fitness = -
Iness ™ (1 + ( ApproachFuet * ApproachTime) + ( S tationK eepFuet * S ationK ecpTime)) ®

T MWMMgimmehigmmbﬂiwmpmengmﬁmamand

mmﬁwwmmwfamdmthemwcmmmwmmemwnwhamdmﬂammm
. was found.

518




bt o B L8P g e

G-
,

Total Parameters = 38 String Length = 190 Population Size = 50

= Simulation — Evaiuation of Resuits:_
- First . :
. of V-bar and »| F= 1
Population == gizionkeep (1+ (AF* AT) + (SKF * SKT)
Created Performed
, Best Fit
Crossover / Members are
Mutation  }a- Placed =
Process the New
Population

Figure 4: Flow Chart of the Selectioa Process
3. SPECIALIZED SOFTWARE TOOLS USED

Splicer

Splicer {1,2], a genetic algorithm tool designed for developing code for evaluating chromosomes was used in
this project. The objectives of this approach were to evaluate the capabilities of genetic algorithms for the
wxdqxudusemamnanngmeﬁnemmmoﬂbeﬁmybgmmhushmﬁmcuom.

If successful this type of approach would be applicable in a variety of domains: ¢.g., robot path planning and
job shop scheduling. Splicer is a flexible, generic tool that allows for:

. Implementing the basic genetic algorithms defined in the literatre

. Defining the interfaces for and allowing users to develop
interchangeable fitess modules

. Providing a graphic, event-driven user interface.

Splicer consists of a genetic algorithm kernel that comprises ail functions necessary for the manipulation of
populations including, the creation of populations ard the population members, fitness scaling, and random
number generation. It also provides representation libraries for binary strings and for permutations. The fitness
modules are the only component of the Splicer system a user will be required to crease or alter to solve a
particular problem. Within a {itness routine a user can create a fitness (scoring) function and set the initial
values for the control parameters. Splicer is available in X-Windows and Macintosh versions, as well as a
geaeric C language command line version (1,2].

Orbital Opezrations Simaulator (0OS)

For testing the 6-DOF controller, NASA’s OOS was used with its graphics interface to the Iris workstation.
The OOS is a high fidelity, multi-vehicle spacecrafi operations simulation that provides 6-DOF equations of
motion within an orbital enviroament including gravity gradient and aerodynamic drag.

The QOS has a hign fidelity Space Shuttle model with the fuzzy 6-DOF controller and the required orbital
environment math models. The OOS also has the capability of simulating mission timelines according 10 crew
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procedures. Toe 6-DOF fuzzy logic shuttle controller was implemerted in the OOS environment and detailed
simulation testing was used to evaluate its performance.

4. RESULTS

Table 1 shows the resuits of the two desigrs. A comparison was made between the outputs from the piloted
simulation runs, the manuaily tuned controller outputs and the automatically fine-tuned controller outputs.

Ascan be seeu,theperfo:!l‘ance of the fuzzy controller compares quite weil to the piloted results. The manually
tned fuzzy controller outperforms the piloted contrel for rate of fuel usage on the velocity vector approach
maneuver by .001 Ibs/sec, and for station keep by .0133 Ibs/sec. A

Membership functions automatically tuned by the genetic algorithm produced results comparable w those
achieved with the manually tuned fuzzy controller. The Fuzzy Genetic Algorithm controller used .002 Ibs/sec
more fuel than the manually tuned fuzzy controller but used .001 Ibs/sec less than the fuel required for a piloted
velocity vector approach maneuver. For station kecp the Fuzzy Genetic Algorithm controller used 004 lbs/sec
less fuel than the piloted results. However, the Fuzzy Genetic Algorithm used .0093 Ibs/sec more fuel than the

The above resuits from the genetic algorithm tuning approach are promising. It is anticipated that through future
work, improved performance of the controller can be achieved by allowing the height of the vertex points to
float as well as the positions in the domain.

Piloted Results

v_bar approach 400-50 022 (bsisen)
Station Keep @200 02 (bs/sec)

Manually Tuned Fuzzy Controller

v_barapproach  463-5¢  .023 (bsise
Station Keep @200

_bar approach 400-5 ) 021
Station Keep @200 016 Qbsisec)

Table 1: Results Summary Table

The graph in figure 5 showstherelatimshipbezweemheamountoffuelmedvmmenmnberofgm&ons.
As can be seen, several minima were found by the algorithm. The concern here was that the genetic algorithm
never stabilized. Results that compared quite well to the manual were achieved, yet convergence to 2 minimal
amount of fuel was not achieved.
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algoﬁmmsbavenoeffeaonuwoonuolla(memb«shipfmmmsmmwed).‘l‘hueposibiﬁtiesm
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Figure 6: The Genetic Algorithms/Membership Function Set
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5. ISSUES/CONCERNS

The problem domain parameters defined for this approach are, Sampling Operator (TOURNAMENT),
Population Size (50), and Mutation Probability (0.001).

A tournament type sampling operator is used to sample members of the population for mating. Sampling uses
mgamplingnm(gmﬂbyselecﬁm)waweamﬁngpmlofmm the current population of
size 50. Members may be chosen for mating multiple times or not at all, according to their target sampling
rates. The mutation probability operator was set 10 L001(1.2). . T

These genetic operators were applied to the members of the population, and their strings, while the genetic
algorithms were nnning.

As a feasibility stody, the population size of fifty was chosen 0 fine-tune the membership functions.
Considering the size of the chromosome string, a larger population may have been beneficial, however, the
complexityofﬂ\eevaluaﬁonmmﬂwdhmwalmﬁondmofsemﬂmhmwwpulﬂimmw.
Due:omiscomputaﬁontime.apopulaﬁonsiugmwu\mﬁftywaspmhibiﬁve.Nowdmfusibﬂityhasbem
ascmMampopnhﬁwduwmﬂdbemmamopﬁmmmmmmmmevaﬁmm

For the test cases performed in this papez, the orbiter's starting position was at 400 feet from the target on the
velocity vector, Itispossiblememcas&usedforevaluaﬁmmayhaveexmisedmly a portion of the controt
system. More test cases where the starting position of the arbiter is randomly initialized would have given a
more accurate evaluation of the genetic algorithm's effectiveness.

Finally, the orbiter's starting position was always 400 fect from the target on the velocity vector, oxly three out
of the sevea sets of membership functions changed by the genetic algorithms for each of the parameters had an
effect on the controller. The coatroller was controlled by the NS, Z and PS membership functions. The
membership functions NL, NM, PM, and PL were never used. Having random starting positions of the orbiter
wouldthenmquixetheuseofallmnofuwmanbership functions.

Ithkwesﬁngmmﬂmaﬂdmwwhu@ﬂow&mmmﬂymmmmﬂgmimm)mw
the same results for the velocity vector approach (~ 0.02 Ibs/sec). A possible reason for this is that the
controllex is also controlled with breaking gates. When approaching a target, the orbiter adheres 10 a defined
speedlimitwhichisafmcxionot‘medistanoemuwmgex.nmerangedependemummcalbd'breaking
gazes"andmshown'mﬁgure7.0utsideof400feenheapproachwdiso.4ftlsec.m300featbeanowable

rate drops to 0.3 fvsec.mo.Zﬁlsecmwisminmimdﬁomzwfeuwapplwhwminaﬁm. Since

mepathtakcnonmeappmchiscmsmimd.d\emullsofallmreewoachumybeuwminm&mmge
possible. :

Range Rate
(Ft/Sec)

0.6 1+

04 1+ r

0‘2 —r |
T 1 ] ! 1 1 1

] i i i | \
50 200 300 400 500 600

Range (Ft)
Figure 7: Breaking Gates Approach




6. SUMMARY

We have demonstrated meuseofgeneﬁcalgoﬁunmwaummaemeﬁmnmingoffmy logic membership
functions for a spacecraft proximity operations controller. The complexity of the problem and the resulting
computational intensity of the genetic algorithm population member evaluations did place some constrainis on
our implementation of the problem. However, 2 solution comparable to highly trained pilots and a manually
fine mnedconuollerwasobuimdinanamabbmnomtofdmﬁeueﬁcalgoﬁmmslwaviablemﬁd

for the automatic fins-tuning of fuzzy logic based control systems.
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A

INTRODUCTION

Conventional regression analysis is a statistical tool for describing relationships between variables.
If a large and representative data set is available, a "good” relation might be established using an
appropriate model. If the statistical properties such as the coefficient of determination (R*) meet certain
criteria of "good" fitting, the relation obtained from the regression analysis may then be used for "making
predictions.” The regression technique is, indeed, a very useful tool for solving many engineering
problems. However, there are situations where use of the conventional regression analysis is not feasible.
For example, when data are imprecise, as is usually the case in many geotechnical engineering problems
such as predicting the conductivity of clay liner, the conventional regression analysis is not applicable
(Bardossy, et al., 1987, 1989). Another example concerns rules of thumb often used in engineering
practice. These rules of thumb are, in loose sense, relationships between linguistic variables.

Fuzzy regression was perhaps first introduced by Tanaka et al (1982). Fuzzy regression analysis,

as the name implies, uses the tools of fuzzy set theory to analyze fuzzy variables. Bardossy et al. (1987)

extended fuzzy linear regression method by Tanaka et al. (1982) into nonlinear cases. In contrast to the
statistical least-squares criterion, a fuzzy criterion based on a "vagueness” measure for the goodness of
the regression was used in their approach. While this approach has been applied to solving many
engineering problems, some questions remain to be answered. Among them are questions regarding
uniqueness of the fitting, selection of the vagueness criteria, and the interpretation of fuzzy regression.

~ N\ This paper presents a new computational approach for performing fuzzy regression. In contrast

to Bardossy's approach (1989), the new aporoach, while dealing with fuzzy variables, follows closely the
conventional regression technigue. In this approach, treatment of fuzzy input is more "computational”
than "symbolic.” The following sections first outline the formulation of the new approach, then detail
the implementation and computational scheme, followed by examples to illustrate the new procedure.

FUZZY MULTIPLE LINEAR REGRESSION - A FRAMEWORK )A //

Suppose that a set of limited number of observations, (¥, x;, X..., XJ's, is t0 be used to
determine a relationship. If all variables are non-fuzzy, the conventional multiple linear regression
involves fitting to the given data the following equation:

Yy=a+tax+...+tax )

where a,, a,, ..., a, are the coefficients that minimize the sum of the squares of the residuals. These
coefficients may be determined by solving the following equation:

n Txe o T | (x) [ EZn )
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_ The coefficient of determination (R?), a handy measure of goodness-of-fit (but not an absolute indicator),
S is defined as follows:

R*=(8,-S) /85, 3
where N 4
' .= Ly - Cy)n)’ @
\ and ,
X S;=Lyi-@+ax+..+a,x)° : 3
\, - In the above equations, all the summation is performed for i from 1 to n. Equations 1 through 5 define

the conventional linear regression based on the least-squares criterion. These equations operate on non-
fuzzy data. As such, interpretation of results of a regression analysis is straightforward.

approach, new mathematical operations must be defined for processing these fuzzy numbers. Although

fuzzy arithmetics (Kaufmann and Gupta, 1985) such as addition, subtraction, multiplication and division
b of fuzzy numbers along with many other operations have been introduced, the efforts required to directly
o implement the above regression analysis by fuzzy arithmetics would be overwhelming. It appears that
L a simpler approach is warranted.

L Now, suppose all the given data are fuzzy numbers. In order to follow the above least-squares. -

i . In the present study, the JHE method (Juang, et al., 1991) is adopted to create a new procedure
:‘ for performing regression analysis of fuzzy data. In the JHE method, fuzzy numbers are often
o characterized by beta-M membership function, f(z), defined below (after Juang, et al., 1992):

f

fz) = C @by {2, ©)
% where
o C = {a" 8* [(d-b)/(x+B)]***}", : )]
a = (1-p)q - (1+p), ) ®
and
8 = (x+Dlp-(a+2), 9
. and where
p = (wb)(db), (10
and
q = aldb). (n

Notice that the parameters b, d, u, and ¢ in the above equations are the minimum, maximum, mean, and
standard deviation of the variable z. The parameters o and §§ are positive real numbers. The beta-M
function is essentially a beta probability density function normalized with respect to its maximum
functional value such that its maximum functional value at the mode is 1.0. It is a bounded function and
satisfies the conditions for a fuzzy number (i.e., normal and convex fuzzy subset). The beta-M function

can be symmetric, skewed to right, or skewed to left in shape, and is suitable for representing various
engineering parameters with ambiguity.

The regression analysis involving equations 1 through 5 is basically a deterministic model. In
a deterministic model, if the input is fuzzy numbers, the output will also be fuzzy numbers. For the
problem at hand, the coefficients a,, a,, ..., a,, and R? obtained from regression analysis will be fuzzy
numbers. Thus, the predicted value, y, obtained from Eq. 1 for a given x-vector (x, X, ..., x,) will be
a fuzzy number. Since the data are imprecise, the "goodness-of-fit" may be measured by some "fuzzy
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indicator,” perhaps in an analogous form of the coefficient of determination used in the conventional
regression analysis.

In this study, the approach for performing regression analysis of fuzzy data is illustrated in Figure
1. Each fuzzy number input is first "de-fuzzified” before being processed by regression equations (Eqgs.
1 through 5). The Monte Carlo simulation technique is used to select a non-fuzzy, random value for a
fuzzy variable based on its membership function. Having de-fuzzified fuzzy numbers into non-fuzzy
values, a set of coefficients including a,, a,, ..., 3, and R? can be obtained through the conventional
regression analysis. After a large number of sets of the coefficients are obtained, fuzzy numbers
representing these coefficients can be “re-constructed.” Detailed procedure 1o implement this approach
is presented below.

PROCEDURE FOR FUZZY MULTIPLE LINEAR REGRESSION

The proposed procedwme for performing a fuzzy multiple linear regression is based on the JHE
method. This procedure is detailed in five steps as follows:

Step 1. For each input fuzzy data (membership function), determine its cumulative function by
integration. Determine also the maximum functional value of these cumulative funactions in this step.
Repeat this step for all input fuzzy variables.

Step 2. Begin the simulation by generating a uniform random number. Then normalize the
generated random number with respect to the maximum functional value of the corresponding cumulative
functions obtained in step #1, followed by equating the normalized random value to the cumulative
function, a non-fuzzy value for each input membership function can be back-calculated. This step de-
fuzzifies all input fuzzy data into non-fuzzy data. :

Step 3. Perform the conventional multiple linear regression described in Egs. 1 through 5. This
step results in a set of coefficients, including a,, a,, ..., a, and R%. This completes one iteration of the
computation.

Step 4. Repeat Steps 2 and 3 a large number of times. The number of repetitions or simulations
needed for a satisfactory result may be estimated by a trial-and-error procedure.

Step 5. Determine the minimum, maximum, mean, and standard deviation of each of the
regression coefficients based on the values obtained from Steps 3 and 4. For each of these coefficients,
the four parameters (b,d,u,and o) are used to define the beta-M membership function (Egs. 6 through 11).
This step results in a group of membership functions that define the wanted fuzzy numbers that represent
the coefficient a,, a,, ..., a,, and R2.

INTERPRETATION OF FUZZY MULTIPLE LINEAR REGRESSION

Fuzzy multipic linear regression may be interpreted just as we would in the case of the
conventional multiple linear regression. For a given vector of fuzzy numbers (X, Xy ..., x) , the
corresponding value of the dependent variable Y can be predicted with Eq. 1. Although the predicted
value will be a fuzzy number rather than a crisp number, the principle and the procedure are no
difference from their well-established counterparts of the conventional regression analysis. Fuzzy output
reflects the uncertainty mostly in the input in this case.
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Figure | A Schematic Diagram for the Proposed Approach for Fuzzy Regression

Interpretation of the *goodness-of-fit” is straightforward in principle. The coetficient of
determination (R?) in the conventional regression is renamed. tentatively here, as “fuzzy coetficient of
determination” (FCD) in the fuzzy regression. The FCD is a fuzzy number describing the goodness-of-
fit. This fuzzy number may be interpreted according W its maximum membership grade, by 2 mapping

model which maps the resuiting fuzzy number into a non-fuzzy value, of by transiating the fuzzy number
into a proper linguistic grade.
NUMERICAL EXAMPLES

- This example is 1o perform 3 muitiple linear regression of a set of non-fuzzy data as shown
in Table 1. Here, the amount of water flows through 2 pipe per unit time. called discharge rate (Q). is
assumed to be related to pipe diameter (D) and slope of the pipe (S) in 2 manner described by the

following equation:
Q=3D"s (12)
Taking the logarithm of this equation yields
longloga.,+a,ng+a..iogS (13)

Fitting this equation t0 the data shown in Table { yields the following results:
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a, = 1.746, a,= 2.616, 3 = 0.536, and K = 0.999 (14)

The solution presented above was obtained using a computer program called FMLR (Fuzzy Multiple
Linear Regression). The program FMLR implements the procedure 2nd equations for performing fuzzy
multiple linear regression presented earlier. When a non-fuzzy data set is input, the program functions
like one which performs the conventional multiple linear regression. When the data is non-fuzzy, the
refationship obtained from regression analysis is non-fuzzy, as reflected in this example. Equation 12
(with the coefficients determined through a regression analysis) is a form of Hazen-Williams equation
commonly used in civil and mechanical engineering.

Table 1 Non-Fuzzy Data of Diameter, Slope. and Discharge Rate

D S Q |b S Q b S Q
@ @Ry @) | @ ®H @)@ @) @)

1.0 0.001 14 {10 001 47 |10 005 111
2.0 0.00t 83 |20 001 289120 005 690
3.0 0.001 242130 001 84.0|30 005 2000

Example 2 - The problem to be solved is the same as the one described in Example 1 except that the
input data is fuzzy. The given data is shown in Table 2 where each daum is a fuzzy number. Each
fuzzy number here is defined by four parameters b, d, a, and 8 (Eq. 6). In addition, the mode m (the
point at which the membership grade is 1.0) of each fuzzy number is shown. Note that an approximation
of the fuzzy number used is a triangular fuzzy namber defined by the parameters b, d, and m. Since the
input data are fuzzy, a fuzzy regression analysis is performed. Results of the fuzzy regression analysis
using FMLR are shown in Table 3. Each coefficient (a,, a,, a,, Or R?) is a fuzzy number characterized
by the four parameters (b, d, o, and B) of the beta-M function defined earlier. The mode of the beta-M
function is also shown as a reference.

Table 2 Fuzzy Data of Diameter, Slope, and Discharge Rate - Given as logarithms

log 7 (ft) log S (ft/ft) log Q (ft'/s)

b d mode b d mode b d mode
-0.10 0.10 0.00 -3.30 -2.70 -3.00 0.132 0.161 0.146
0.27 033 030 330 -2.70 -3.00 0.827 1.011 0919
0.43 052 048 -3.30 -2.70 -3.00 1.245 1522 1.384
-0.10 0.10 0.00 -2.20 -1.80 -2.00 0.605 0.739 0.672
0.27 033 030 -2.20 -1.80 -2.00 1.315 1.607 1.461
0.43 052 048 220 -1.80 -2.00 1.732 2116 1924
-0.10 0.10 .00 -1.43 -1.17 -1.30 0.941 1.149 1.045
0.27 033 €30 -1.43 -1.17 -1.30 1.655 2023 1.839
043 0.52 048 -1.43 -1.17 -1.30 2070 2.530 2300

Note: In this exampie, the parameters « and 8 for all fuzzy numbers are set to be equal
10 2.42. According to Juang et al (1992), in this case, these beta-M fuzzy numbers
take the form of a x-curve, a bell-shape bounded function.



Table 3 Results of the Fuzzy Regression Analysis for Example 2

For the coefficient & —
b= 1.743, m= 1.746, d=1.749, a= 127, 8= 120
For the coefficient a,:
b= 2.587, m= 2.616, d=2.643, a= 1.26, 8= 122
For the coefficient a,:
b= 0.531, m= 0.536, d= 0.541, a= 126, 8= 122
For the coefficient R* (FCD):
b= 0.999, = 1.000, d= 1.000, a= 1.01, 8=0.00

Example 3

In many engineering problems, the basis for deriving a solution often is some rules of thumb
provided by experts. For example, the possibility of meeting the EPA requirements for constructing a
clay liner for the purpose of containing hazardous wastes is often assessed with a set of rules of thumb.
Symbolically, each of these rules of thumb is expressed as follows:

IF X, is A, and X, is A5 and X, is Ay
THEN Y is B;.

Bere X,, X;, and X, are linguistic variables representing some factors that are thought to have an
important influence on the possibility of meeting the EPA requirements, such as the plasticity index,
colloid percentage, and swelling potential of the clay used. The values of these linguistic variables, Ay,
Ag, Ay, and B;, are some descriptions commonly used in the assessment of clay liner. For example, a
rule of thumb may state:

IF the plasticity index is medium, and the colloid percentage is high,
and the swelling potential is low,

THEN the possibility of meeting the EPA liner requirements is very high.

Now let’s assume a group of rules of thumb on this subject are available, as listed in Table 4. These
rules may be used to establish a predictive equation for assessing the possibility of meeting the EPA liner
requirements. To begin with, all possible values of the linguistic variables used in the model need to be
transiated into fuzzy numbers. The linguistic terms and their corresponding fuzzy numbers used in this
example are listed in Tables 5 and 6. With data given in Tables 4, 5, and 6, a fuzzy multipie linear
regression can be performed. The resuits of this analysis are listed in Table 7. :

INTERPRETATION OF RESULTS OF FUZZY REGRESSION

If the domain or range over which the FCD (a fuzzy number) is defined is small, the mode of
this fuzzy number may be used to represent the FCD. Oun the other hand, if the FCD is quite fuzzy, an
interpreting model is requirea. For example, the centroid of the membership function may be used to
represent the fuzzy number.

e g



One possible approach for interpr
into a linguistic grade. A dictionary of linguistic grades
functions pre-defined (such as the one shown in

Table 8),

eting the obtained FCD is to transiaie the resulting fuzzy number
for the goodness-of-fit, with their membership
may be used to describe the “goodness of fit.”

This may be done by calculating and comparing "Euclidean distances” between the resalting FCD fuzzy

number and the pre-defined fuzzy numbers o
of "similarity” between fuzzy numbers.
smallest distance or highest degree 0

(Zimmermann, 1987):

dy = Y (B0 - By(x)]2

f the linguistic terms. The Euclidean distance is.a measure
Thus, the most appropriate translation is the one with the
f similarity. A simple model for the Euclidean distan.e is as follows

(15)

where d, = distance between the FCD and the pre-defined fuzzy number j,
peco = membership function that defines the FCD, and
w; = membership function that defines the fuzzy number j.

Table 4 Rules of Thumb for Assessing the Possibility of Meeting the EPA Requirements

Plasticity index Colloid Percentage Swelling potential Possibility of
®n (CP) SP) meeting the
EPA requirements
high high high low
high high medium medium
high high low high
high medium high low
high megium medium low
high medium low medium
high low high very low.
high low medium low
high low low medium
medium high high medium
medium high medium medium
medium high low very high
medium medium high low
medium medium medium medium
medium medium low very high
medium low high very low
medium low medium low
medium low low medium
low high high low
low high medium medium
low high low high
low medium high low
low medium medium medium
low medium low high
low low high very low
low low medium low
low low low medium
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In Example 2, the degree of fuzziness in the data is smail.
resulting coefficients is small, and interpretation of the "g
essentially equal to 1.0, and the fitting (regressicn) is rated as

is fuzzier, and the resulting coefficients refl

numbers representing "very good”

FCD and "very good" is larger than

is rated as "excellent.”

Another approach to interpret
of the dependent variable. However,
to be first "de-fuzzified.” In this case,

odness-o

As a result, the fuzziness in the
f-fit" is easy. In this case, R? is
“sxcei-ent.” In Example 3, the input data
ect this fact. The FCD fuzzy number is between the fuzzy

and "excellent” listed in Table 8. The Euclidean distance between the

that between the FCD and "excellent.” Thus, the fitting (regression)

the "goodness-of-fit" is to plot the predicted versus observed values
the predictions and observations, both as fuzzy numbers, needed
the "center of gravity" approach may be used.

Table 5 Linguistic Terms and Their Corresponding Fuzzy Numbers - Independent Variables

Linguistic ~Fuzzy number Linguistic Fuzzy number Linguistic =~ Fuzzy number
Term Term Term

(PD b d mode | (CP) b d mode SP) ‘b d mode
high 25 40 30 high 20 30 25 high 25 40 30
medium 10 30 20 medium 5 25 15 medium 10 30 20
low 0 15 10 low 0 0 5 low 0 1510

Note: In this example, the parameters «
Other membership functions such as triangular or trapezoidal shape function,

and B for all beta-M fuzzy numbers are set to be equal to 2.42.
if desired, may be used.

Table 6 Linguistic Terms and Their Corresponding Fuzzy Numbers - Dependent Variable

Fuzzy number

Linguistic Grade for "Possibility"

high

parameters very low low medium very high
b 0.00 0.00 0.25 0.50 0.75
d 0.25 0.50 0.75 1.00 1.00
mode 0.00 0.25 0.50 0.75 1.00

Note: In this example, the parameters o and B for all beta-M fuzzy numbers are set to be equal to 2.42.

Other membership functions such as triangul

ar or trapezoidal shape function, if desired, may be used.

Once a satisfactory fuzzy relation is established through a regression analysis, it may be used to
predict the value of the dependent variable for given values of the independent variables. For example,
3 for predicting the possibility of meeting the EPA requirements is as

the equation obtained in Example
follows:

P

#

where

Pl = the plasticity index,
CP = the colloid percentage,

2% + a, (PI) + 3, (CP) + 3, SP)

P = the possibility of meeting the EPA clay liner requirements,

(16)
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SP = the swelling potential, and
a, 3, 3,, and a, = the coefficients defined in Table 7.

With this equation, the possibility of meeting the EPA liner requirements may be estimated for a given
set of conditions regarding the plasticity irdex, colloid percentage, and swelling potential of the clay used.
Since the values of the three independent variables PI, CP, and SP, and the coefficients a, a,, a,, and
a, are all fuzzy numbers, the evaluation of this equation involves fuzzy computations. However, this can
easily be done using the JHE method—simply replacing step 3 in the FMLR procedure presented earlier
with ordinary addition and multiplication (Eq. 16). The result of such computation would yield a fuzzy
number as the possibility of meeting the EPA requirements. The methods used for interpreting the FCD
may be employed to interpret this resulting fuzzy number, and the possibility of meeting the EPA liner
requirements is thus assessed.

Table 7 Results of the Fuzzy Regression Analysis for Example 3

For the coefficient a,:

b= 0.351, m= 0.702, d= 0.905, a= 129, 8=0.75
For the coefficient a;:

b= 0.0028, m= -0.0025, d=-0.0019, «= 041, 8= 0.83
For the coefficient a,:

b= 0.010, m= 0.014, d= 0.014, a= 0.77, 8= 0.00
For the coefficient a,:

b= -0.020, m= -0.020, d=-0.016, a=0.00, 8=1.20
For the coefficient R* (FCD):

b= 0.69, m= 0.90, d= 091, o= 1.76, 8=0.13

Table 8 Fuzzy Numbers and Linguistic Grades for Describing Goodness-of-Fit

Linguistic Grade for Goodness-of-Fitting
Fuzzy number

parameter poor fair good very good excellent
b 0.00 0.00 0.25 0.50 0.75
d 0.25 0.50 0.75 1.00 1.00
mode 0.00 0.25 0.50 0.75 1.00

Note: Here the parameters « and B for all beta-M fuzzy numbers are set to be equal
to 2.42. According to Juang et al (1992), in this case, these beta-M fuzzy numbers
take the form of a w-curve, a bell-shape bounded function.

DISCUSSIONS

It is observed that the modes of the membership functions of a,, a,, and a, obtained in Example
2 are practically identical to the coefficients obtained in Example 1 where standard ‘regression was
performed. As such, it might be speculated that a general relationship may be established between the
range or dispersion in the membership functions of fuzzy variables D, S, and Q and the dlsperswn in the
membership functions of the resulting coefficients, a,, a,, a,, and R?>. However, a series of sensitivity
analyses performed in this study (not shown here) seem to reject existence of such a general relationship.




The number of simulations required to reach a "steady” result is about 1000 for the examples
studied. The maximum number of simulations tried was 10,000. The effect of degrees of fuzziness in

the input data on the regression results was also studied. The results indicate that the fuzzier the input
data are, the fuzzier the resulting coefficients would be. More study to verify these points is needed.

SUMMARY AND CONCLUSIONS

A new approach and procedure for performing fuzzy multiple linear regression is presented. The
procedure is based on the JHE method for processing fuzzy information in the setting of multiple linear
regression. By treating the conventional regression as 3 deterministic process (model), the JHE method
can be applied to perform the regression analysis of fuzzy data. While input data may be fuzzy, as is
often the case in many real-world applications, the new approach including the computation algorithms
is precisely defined and is non-fuzzy. The new approach appears t0 be able to properly establish fuzzy
relations from a given set of rules of thumb, based on limited study. More study is needed t0 further
verify the proposed approach.

ACKNOWLEDGMENT

The study on which this paper is based was supported partially by the National Science
Foundation under Grant No. MSS-9020252 to Clemson University. Dr. W. Bridges of Clemson
University, a statistician, reviewed the manuscript and provided many constructive comments. Mr. P.
Ghosh of Clemson University provided the rules of thumb on assessing the possibility of satisfying the

EPA clay liner requirements listed in Table 4.

REFERENCES

1. Bardossy, A., Bogardi, 1. and Kelly, W.E., "Fuzzy regression for resistivity-conductivity
relationships,” Proceedings, NAFIPS-87, Purdue Univ., W. Lafayette, IN., 1987, pp. 332 -346.

2. Bardossy, A., Bogardi, 1. and Kelly, W.E., »Geostatistics utilizing imprecise (fuzzy) information,”
Fuzzy Sets and Systems 31, 1989, pp. 311-328.

3. Tanaka, H., Uejima, S. and Asai, K., “Linear regression analysis with fuzzy model," 1EEE
Transactions on Systems, Man and Cybernetics, SMC-12, 1982, pp- 903-907.

5. Kaufmann, A. and Gupta, M.M,, Introduction to Fuzzy Arithmetic - Theory and Applications, Van
Nostrand Reinhold Co., New York, 1985.

6. Juang, C.H., Huang, X_H. and Elton, D.J., “Fuzzy information processing by the Monte Carlo
simulation technique,” Journal of Civil Engineering Systems, Vol. 8, No. 1, 1991, pp. 19-25.

7. Juang, C.H., Huang, X_.H., and Elton, D.J., "Modeling and analysis of non-random uncertainties -
fuzzy set approach,” I. Numerical and Analytical Methods in Geomechanics, Vol. 16, 1992.

8. Zimmermann, HJ., Fuzzy Sets, Decision Making, and Expert Systems, Kluwer Academic Publishers,
Boston, 1987. ’ )







O/ F— 6=
et 857

N98-29575

Incorporation of Varying Types of Temporal Data in a Neural Network

M. E. Cohen®,D. L. Hudson#

*California State University, Fresno, CA 93740
#University of California, San Francisco, 2615 E. Clinton Avenue, Fresno, CA 93703

ABSTRACT

Most neural network models do not specifically deal with temporal data.
Handling of these variables is complicated by the different uses to which
temporal data are put, depending on the application. Even within the same
application, temporal variables are often used in a number of different ways.
In this paper, types of temporal data are discussed, along with their
implications for approximate reasoning.  Methods for integrating
approximate temporal reasoning into existing neural network structures are
presented. These methods are illustrated in a medical anlication for
diagnosis of graft-versus-host disease which requires the use o several types
of temporal data.

INTRODUCTION

Neural network modeling has received renewed attention in recent years {1}.
Advances in both hardware and software have made the use of these systems for large-scale
practical purposes feasible [2]. Neural network use is expanding rapidly in numerous
domains [3-5]. Medicine has been a prime area of application of decision support systems
based on neural networks for a number of reasons [6-8), including the difficulty of
developing a traditional knowledge-based system for complex medical applications. A
number of researchers have also investigated incorporation of fuzzy variables and
techniques of approximate reasoning into neural network structures {9-14], including a
number dealing with medical decision making [15,16]. Only recently has some attention
been paid to the incorporation of temporal information in neural network models (17-19].
Temporal data have different interpretations depending on the application, thus general
techniques cannot be successfully implemented without examining the ultimate usage of
each of these variables. For example, the most straight-forward usage of temporal
variables is in partial differential equations in which the time variable is clearly defined in
mathematical terms and requires no further interpretation. However, only a few
apglimtions are well-understood enouﬁh to lend themselves to modeling throu
dzik erential equations. For other less well-understood subjects, other approaches must
taken.




One of the strengths of the neural network approach is that their basic structure
relies on the architecture of biological nervous systems, concentrating on the structure of
the individual neuron, as well as the massively parallel nature of biological nervous systems
[20}. Unfortunately, the processing of temporal information is only partially understood in
a biological sense. The ogeration of short-term temporal influences can be explained by
inhibitory and excitatory iochemical influences at the synapses, which account for the
handling of conflicting signals within very short time intervals. However, the longer term
handling of temporal information, including memory itself, is still a major area of cognitive
research. Unfortunately, the current level of knowledge pertaining to this aspect of

biological nervous systems cannot provide a clear model for handling temporal
information.

In the next sections, different types of temporal data are examined, followed by the
definition of structures which will allow the incorporation of these variables into an existing
neural network structure preiously developed by the authors, followed by a discussion of
the use of fuzzy variables to represent both temporal and state variables.

TYPES OF TEMPORAL DATA

In traditional applications, temporal data have been handled in a number of ways,
depending on the application. In well-defined models, partial differential equations can be
used to represent temporal variables in the same way as state variables. Another valuable

approach is the use of state-space diagrams, using transition functions to lead from one
state to another. In the development of decision making algorithms for areas such as
medicine, in general not enough information exists either to define a differential equation
model or state-space diagrams. For applications such as this in which the majority of
available information is contained in accumulated databases, neural networks offer a
natural means for development of decision models. Toward this end, it-is useful to analyze
the manner in which temporal information is important to medical decision making, and it
fact to other areas of decision making which rely on numerous findings which are utilized
to differentiate among categories.

Temporal data can be divided into the following categories, depending on which
aspects of the data are important:

1. a Data: The change in value from the previous recording (examples: blood
pressure, cholesterol);

2. Normalized A Data: The change in value relative to the time interval (examples:
weight gain or loss, hemoglobin level);

3. Duration Data: The duration of time for which the finding persisted (examples:
chest pain, fatigue).

Sequence Data: A particular sequence of events (examples: fever occurring
before rash occurring before generalized fatigue, noun occurring before verb
occurring before adjective).

Each of these variable types requires special handling, each of which is discussed in the
following section.




A. A Data, Normalized A Data, and Duration Data

These data t{ges can be handled in a straight-forward manner, according to the
t

following schemes. n(t;) be the value of the nth variable at time tj, and let
An = n(t) - n(tj.1)- (1)
At = (t- tj.1) 2

Assign a new node in the neural network for A data such that
Pn =An 3
The original network is then expanded by the number of nodes required to accommodate

the items for which the change is important. For normalized A data follow the same
procedure as before, except let

qn = An/At. 4)
Duration data can also be handled simply, by establishing
Iy = Atg = (i - t0) ®)

For duration data, the important parameter is the length of persistence of a findin% Thus
the Atg in this case is the difference between the current time and the time to when the

finding oriinau' y occurred. It should also be noted that time measures (¢.g. minutes, hours,
days, months, years) should be normalized for each application. &

B. Sequence Data

This is the most difficult flproblt.-.m in that a new variable cannot be created to deal

with this entity. A major modification must be made to the neural network structure for

accommodating this type of reasoning. These data are handled by embeddini; a procedure
e

at each of the sequence nodes. To analyze for the presence of a sequence, let fj, i=1,...,k
be the ith finding out of k and let t; be the ith time interval. Define the square k x k matrix
S= [sij] where

sij = 1if f; occurred at time tj

0 otherwise. 6)
For a proper sequence,
Sij = 1ifi=j

Thus tr [S] = k if the proper time sequence occurred, where tr [S] is the trace of the matrix
S. The value of node up according is then determined by:

up = 1 iftr[S] =k
" 0 otherwise )
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IMPLICATIONS FOR APPROXIMATE REASONING

The above constructs assume crisp input. The following modifications can be made
to accommodate fuzzy input. L

A. A Data, Normalized A Data, and Duration Data

For these data g'pes, there are two parameters which may assume rather than
crisp values: the time ependent finding n&) and the time interval itself t;. The n(t;)’s can
be of four types: binary, categoric, integer, or continuous. In fact, for these types of
temporal data, the values themselves are not important, only the differences in the values.
(If the value itself is important, it is incluaed as a separate node in the network.) Thus the
generalization of the difference operation is required. The most straight-forward
generalization appears to be extended subtraction for fuzzy sets defined in [21). According
to the algorithm established by Dubois and Prade, this operation can be applied to
continuous variables, with a simpler, direct comfmtation possible for the discrete case. If
the data itself is binary or categoric, these variables can first be fuzzified, if appropriate. In
the case of normalized data, the extended division, also discussed in [21}, can be applied. It
can be shown that if M and N are fuzzy numbers [21], then

MeN=M @ (-N) ¢
will also be a fuzzy number, where M@ N is extended addition, and
MoN=Me®ND ©)

likewise is a fuzzy number, where M@ N is extended multiplication.

B. Sequence Data
For the sequence data, whether or not a series of events occurred in a given order is

a crisp result. However, the degree to which the sequence occurred in the correct order
can be considered. Instead of setting node up, as in equation (7), consider

up = (tr[S}}/k (10)

The definition provides a degree to which the sequence occurred in the required order.
For example, consider the k x k matrix

p—

(7]

[}
OO0
COmMOO
e O O
—_-_—oO00
OO0

(11)

0 0 0 0 w 1

- -

Then up = (k-2)/k, the degree to which the required sequence was met. Each row in this

matrix represents a point in time, and each column represents a symptom. sij = 1 if attime
i symptom j is present.
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EXAMPLE

The method is illustrated on a problem for graft-versus-host disease (GVHD) taken
from [22], and used as the basis for a recent workshop [23}. GVHD is a disorder which can

occur after any kind of transplant operation, ranging from an organ transplant to tissue

transplants, such as bone marrow. The disease exists in three forms: acute, chronic, and
syngeneic. It is a complex disease in which changes in symptoms over time are extremely
important for diagnostic purposes. The objective of the neural network decision aid is to
determine if the disease exists in any of its three forms, o: not at all.

Fig. 1 shows a neural network for this problem. Nodes ny through ni; are standard
nodes, py through pko are A nodes, gy through g are normalized A nodes, r; through rk.
are duration nodes, and uy through uks are sequence nodes. The following are examples o‘%
each type of node for GV*-]D:
presence of total body erythroderma (standard node)

ni; thrombocytopenia (standard node)

Pj; change in number of B cells (A node)

gk:  sudden weight loss (normalized A node)

n: continued thrombocytopenia (duration node)

up: Umy pruritic maculopapular rash (sequence node)

umy: gastrointestinal abnormalities
uma:  liver dysfunction
Umgs: Dleeding

Note that thrombocytopenia is important both for its presence and for the . .gth of
time for which it has been present. In this application, all times will be considered to be in
months or fractions of months, and are given as offsets from the initial visit, which is
considered to be 0.

To illustrate, consider the following values for the above example:

n; = 0.9 (degree of presence of total body erythroderma

nj, = 1.0 (degree of presence of thrombocytopenia)

pj= Anj= n(tjz}n(tiz-1) = 300 -170 = 130 (assumes crisp values)

(change in number of B cells)

gk = AnDnje/atig = (ntj4- ntis-1)/(ti4 - tj4-1) (assumes crisp values)
= (140 - 130)/(4 - 2) = 5 (weight change/month)
n=tis-tig= 4 - 1 = 3 (assumes crisp values)
(continued thrombocytopenia)
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Ump: Umi Um2 Um3 Ums

ti6l 1 0 0 0

t; 1 1 0 0
U= 6

ti63 0 1 0 1

tj64 0 0 0 1

“up = tr[U)/k = 3/4 = 0.75

These values then become the values of the input nodes. Along with known classification
values, the appropriate weighting factors are determined through the learning algorithm.

The network is trained on data of known classificaticn to determine weighting
factors for each of these nodes, both from the input layer to the intermediate layer, an
from the input layer to the output layer. The result of the process is a differential diagnosis
in which the degrees of presence of each form of the disease can be ranked.

FUZZY NEURAL NETWORKS

Another issue in the establishment of fuzzy neural networks is the role of linguistic
quantifiers [24]. Considering the above example, the entry for gk "sudden weight loss"
refers to the normalized & data node. Although the linguistic variable "sudden" is not
handled directly by the neural network learning algorithm, this concept is adequately
represented by the amonnt of weight loss over a given time interval. The algorithm uses

this information through the supervised learning process to assign an appropriate weight :o
this finding.

For the example in the previous section for A data, consider the B cell count. Due
to inaccuracies in laboratory analyses, these results can be considered fuzzy numbers. If we
assume each reading to be a fuzzy triangular number centered around the given values,
with an experimental error of 5%, then the fuzzy values would be:

n(t;) = (285315)
n(ti;1) = (1615,178.5)

Then equation (8) can be applied. Similar results may be obtained for the other variables.

In order to handle fuzzy triangular numbers for standard nodes which do not
represent A data, the algorithm for handling input interval data described in the next
section can be applied.



Figure 1: Neural Network Structure Showing Temporal Data

NEURAL NETWORK MODEL AND LEARNING ALGORITHM

The heart of the neural network model is the learning algorithm. The topic of
learning with fuzzy information has a long history, beginning with Wee and Fu's
consideration of a fuzzy automaton in 1969 [25]. ~Kaufmann also considered fuzzy -
perceptrons in 1977 {26]. Zadeh suggested a ditferent approach which used linguisticall
valued features [27]. Fuzzy isodawa clustering algorithms have also been developed [28].
All of these approaches have relevance for neural network algorithms.

Following the learning algorithm previously developed by the authors, the temporal
nodes are adde(i as shown in Fig. 1. If the node 1s fuzg, an interval approach is taken, as
previously described [29], in order to accommodate all extreme values. The algorithm
permits the input of binary, categoric, integer, or continuous data, as long as an ordering
exists for the categoric data. Variables which are not independent can also be handled
directly. A summary of the interval data handling is given here.

Handling of Interval Dara

In order to handle interval data as input, the following is proposed. For a data set
with n variables, define a vector

x = [(x1,y1)» (x2,¥2)s--(Xns¥n)] (12)

where (x;yj) represents the interval range for the ith variable. The values for (x;,  will be
determined by the input data in the training set for the learning algorithm. The objective is
to obtain a decision surface which will separate data at any f:oint in the interval. This can
be accomplished if the extreme values are accommodated. In order to do, this ail possible
combinations of interval endpoints must be considered. For a data set with n variables, 27
combinations will be produced. A new set of 2™ vectors is then defined:
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Zx = [21,22,,,,,21-‘] k= 1,...,2n - (13)

where zj € (xj,yi) 2 all pessible combinations of x;,y; are generated for ij = 1...,n. The
learning algorithm is run for each of the 2" cases. Yhe weights attached to the decision
surface which produces the poorest classification is chosen in order to form a robust model.

CONCLUSION

The neural network approach for development of decision support systems offers a
number of advantages, including easy development of the knowledge base. As illustrated
above, temporal data of several types can be accommodated into the existing framework.
Variables can assume either crisp or fuzzy values. The resulting system can be used alone,
or in conjunciion with a knowledge-based cxpert system to bring to bear all relevant
information whether from expert input or databases. In order to implement practical
systems using interval data with large numbers of variables, it may be necessary to utilize
parallel processing to establish models. The models themselves can be applied to new
cases using standard sequential computers. Work is continuing in this area to streamline
algorithms and to accommodate other types of fuzzy data into the system.
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FUZZY OPERATORS AND CYCLIC BEHAVIOR IN FORMAL NEURONAL
NETWORKS.
™ Fuzziness may lead to chaotic dynamics.

E. L4bos!, A.V.Holden?, J.Laczk63, L. Orz6}, A.S. Labos!

1: Semmelweis Univ. Med. School, 1st Dept. of Anatomy, Neurobiology Unit of the
Hung. Acad. of Sci., 1450 Budapest, Ttizoit6 u. 58, GARY; 2: The Univ. of
Lcccﬁ, Center for Nonlinear Studies, Leeds LS2 9JT, UK; 3: Ludwig Maximilien
Univ., Klinikum Grosshadern, Neurolo§ische Klinik Munchen, GERMANY and

Central Res. Inst. of Physics of Hung. Acad. Sci.,, HUNGARY

ABSTRACT - In formal neuronal networks (FNN) built of threshold gates, a unit
step function is applied. It is regarded as a degenerated distribution function (DDF)
ang will be referred to here as a non-fuzzy threshold operator (aFTO). Special
networks of this kind generating long cycles of states are modified by introduction of
fuzzy threshold operators (FT! O% i.e. non-degenerated distribution functions (nDDF).
The cyclic behavior of the new nets is compared with the original ones. The
interconnection matrix and threshold values are not modified. It is concluded that the
original long cycles change: (1) fixed points, (2) shorter cycles or (3) as computer
simulations demonstrate, aperiodic motion or chaotic behavior appears. The
emergence of the above changes depend on the steepness of the threshold operators.

INTRODUCTION

A formal neuronal network (FNN) means now more than a McCulloch-Pitts
network (1943): - (1) - the states of units and nets are fixed; - (2) - an interconnection
matrix is fixed and synthesized through some process, here not by “learning"; - (3)
thresholds are specified for each unit;- (4) a threshold function (a unit step function
or a softer "S-shaped function" is finally applied. Thus the computation of the new
network state is as follows:

Sold = S —>SM —>sM-8 —>T(sM-0) = spew (1)

The sequence of s; states can be generated by the iteration of this N network
mapping which incorporates: (1) - interconnection matrix M;- (2) - threshold vector ©
; and - (3) - threshold operator T. The netv.orks may differ from each other by these
objects. In learning processes an (M,8) sequence is generated in the hope of reaching
a éxed network. In case of simulated annealing related to Boltzmann machines the
steepness of a T - like function is changed to reach the limiting result.

In this study, the matrix M and threshold vector is fixed, the iteration is the only
change. External input vectors which would transtorm the machine iato a non-
autonomous (open) system are not introduced. Learning (or adaptive synthesis) is not
present. The network are however, very special. They were originally (L4bos, 1980-
1987) synthesized in order to generate long finite cycles or to design networks of

minimum number of required elements to a given length of cycles. The aim is to

investigate the influence of the thresholds operator T to the length of cycles which
appear during the iteration. For this reason "S-shaped” (still monotonic) operators are
ul:troduced as it is done in the "neurocomputer-science”. This is the "fuzzy” aspect of
the study.
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1. MULTIPLE AND PRESENT MEANING OF FUZZY OPERATORS.

Among the possible meanings of "fuzzy" objects (sets, logic, grammar, languages,*. .

rograms, enwronmenmaphs, topology, etc.; see in Zadeh et al, 1975) only the
gollowing destination will be applied: as a membership function or degenerated
distribution function. The non-fuzzy possibility is as follows:

2ok o™ ®

Such a function is used in threshold logic or formal neurons and in their networks
by coordinates. Since the 70-ies the concept was extended to "S-shaped functions” or
the application of such non-idealized steps became a necessity. However, the
consequences were not fully considered.

L4bos (1975) regarded the real nerve cells as special "measuring devices’ included
in their activity a special measuring ﬁrocedure, encratin% "measure space” (Msd) in
mathematical sense (Labos, 1988; Halmos, 1974). The MS-s are closely related to
distribution functions. Thus this generalization is plausible.

DEFINITICN: - A real valued function F is called a distribution function if the
following conditions are satisfied: - (1) F is increasing monotonically;- (2)-0 F 1;-
(3) F is semicontinuous from the left, i.e. lim F(r) = F(0) if r tends to zero from
negative direction. The op&osite continui% is not demanded, but permitted; - (4) -
Oﬂtpi:onally the differentiability of function F is also supposed.

MARK: All distribution functions, including the discrete ones, belong to this
cate%o . Certain text-books demand one sided continuity from the opposite direction
which does not make essential differences,

DEFINITION: A degenerated distribution function (DDF) is the function defined
in eq. (2) and widely used in threshold logic. It is here called non-fuzzy threshold
operator (nFTO). An arbitrary, non degenerated distribution function defining a
Lebes e—Stie!lg;:.s measuring space may have the name of fuzzy threshold operator.

RE : The "fuzzy" attribute makes the nomenclature applied in measure
theory, lo%c or for membership-functions uniform. The semantical background is
arbitrary. E.g. a response curve which may occur in a single natural or artificial
neuron can be regarded either as a temporal average or it may represent a response
gf pop_ula:jion of cells. A normalization to remain between O and 1 is useful, but can

e omitted.

2.METHOD: COMPARISON OF BINARY THRESHOLD.
GATE WITH FUZZY THRESHOLD GATES (FTO-s).

The FTO-s or non-DDF-s applied here are as follows:
Ty(x) = /(4R = 1/(1 + &%) 3)
Ty(x) = 0.5 + 0.5(eX% - %) /(R + KX) 0]

The binaxzéthreshold gate nets used here belong to a rather special class of
networks (L4bos, 1980-1987). These are capable of generating transient-free
behavior. In a more special moreover rarely occurrin% - i.e. non-generic - case the
networks may generate long or even maximal cycle lengths. This means in an n-
neuronal nets L = 27, the number of binary vectors in the state space. The nets were
synthesized on the basis of a Theorem (L4bos, 1984, 1987) and were searched with
computerized selection. Examples are presented in the quoted works fromn = 1to
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n = 9 dimensions (the number of neurons in a network). These finite nets in the
actual autonomous case are non-chaotic. We will see however, that the behavior of
these nets may become suspiciously chaotic as soon as FTO-s like Ty and Ty are
introduced. InFig 1. - 3. the so called code-trajectory of such networks is presented -
as a reference - which is the diagram built of the consecutive states as decimally
coded numbers based on the separate vectorial states of the net (e.g. code(011011) =
27 and n = 6. The diagram consists of the lines of (x,xtg{x,y) and (x,y)-(y,y) where x
and y are successive state codes. This is simple of a method representation, similar to
Poincare and Lamerey diagrams used in dynamics. In "chaotic” cases the next state
plot of (x,y) pair of state is used only by coordinates.

3. BASIC OBSERVATIONS. (Figure 1-6).

The observations refer to the FTO cases, since the binary case is more explored and
plays here the role of reference for the new behavior. The comparisons of the two
situations are here the essential methodical and conceptual procedure. The computer
simulations of which examples are given show that the "exponentially” long (L = 2T)
or maximal (L = 27) cycle lengths of state flows change radically if FTO-s are applied
instead of the unit-step-function. If the parameter k in functions (3) or (4) are
suitable an orfiginauy long cycle of a coordinate-flow - after transient states - may
become a fixed point, a pair of fixed states or four clusters or four points. The four
clusters occur at higher values of k and corresponds to the %0}, 0,1), (1,0), (1,1)
quaternio of pairs of successive coordinates of state vectors. Their transitions (i.e. a
next-coordinate plot) in the binary, non-fuzzy case are not so interesting since only
the few(8) transitions may occur: (0,0)-(0,0), (0,0)-(0,1), (0,1)-(1,0), (0,1)-(1,1), (1,0)-
(0,0), (1,0)-(0,1), (1,1)«(1,0), (1,1)(1,1). In the case (see all Figures) the state
space becomes a continuum set and not only the coded vectorial flows shows
interesting picture but also the coordinate-flows. For this reason and also because of
hard representation, these phase-diagrams by components were displayed.

Bifurcation diagrams with the control parameter k of the steepness are also
fabricated. The u§ual routes to chaos-like dynamics can be demonstrated. Such
systems include n“+n+1 numerical parameters because of the matrix, threshold
vector and S-shaped operator where n is the dimension. E.g. at n=9, 91 different
bifurcation diagrams are possible.

The study of non-monotonic operators instead of the distribution functions or
threshold operators here is neglected since by changing the norm of matrix and
threshold or value of k. Thus the working domain remains inside a bounded set.

The insight which can be gained from the various diagrams is a possibility of
categorization of the diverse dynamical behaviors.

4, SHORTER CYCLE LENGTHS WITH FUZZY OPERATORS.

The most radical shortening of the cycles is the case when a maximal finite cycle
becomes a fixed point. This occurs at very small absolute values of k. "Very small”
seems to be different at different values of dimensions of the state vectors. Usually at
ll;i%?er. dimensions smaller k-s still are capable of displaying complicated dynamical

ehavior.

5.0CCASIONAL LOSS OF PERIODICITY BY APPLICATION OF FUZZY
OPERATORS.

As we cannot analytically prove that in such complicated dynamical systems which
are presented here an aperiodicity in fact occurs, therefore the statement of the
emergence of chaos is based on computer experience. This is a frequent situation in
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amics of chaos. The ?Yearancc of stran_ﬁ motion of coordinate flows is relatively
simple at the investigated low dimensions. These attractors frequently consist of one,
two, or a few disjoint or intersecting line-like plots. At certain regions the lines diesglay
thickenings (Birkhoff) which suggest complicated finer structure may be explored by
zoom.

It is an undecided question whether in the cases which became chaotic(aperiodic), - -
an infinite number of (un)stable periodic attractors depending on the initial value
may occur or not. It is a chgeétion, what species of chaos occur (see €.g. in Holden,
1986; Kohda and Aihara, 1990, etc.).

6. OTHER EFFECTS.

Several phenomcna were not detailed here: (1) Emergence of chaos from short
cycle generating binary systems with or without transients; (2) How small the value of

" K could be , i.e. how "soft” or "clongated” S-threshold operator might coexist with the

~ No doubt, the finite valued logical decisions can be played back to t.

chaos; (3) Itis to clarify the influence of the initial state to the attractor i.e. a study of
the basin size of attractor. It is especially interesting if two or more loops or clusters
occur in a next coordinate plot. It is often observed in such cases that the behavior is
vibrating. Regular jumps occur between two cycles and therefore two cycles may have
a unified basin of attraction.

7. ADVANTAGE OF FUZZY OPERATORS OR NOT?
The formal neuronal networks with the presented special class of matrices and

thresholds are suitable for coding or for economical (small network) control of
exponentially large number of effector organs. The advamage of fuzzy decisions for
which this generalized truth functions can be used (see in Za eh-Fu-Tanaka-Shimura,
1975) compared with the binary or many-valued logics is not yet comgletely explored.

¢ binary case at
least syntactically. The numerous values are justified if more than two meanings can
be attributed to the variables.

However, in the case of continuous operators, the number of possible decisive cases
becomes infinite or moreover continuum set. In technical implementation this can be
a handicap or can be tolerated. Tolerance may be introduced by "digital (staircase-
shaped)" decision operators dividing again the domains into sharply distinguishable
subdomains. :

The concept of fuzziness seems to be more ag_};ﬁcable in contexts beyond those
which were touched by this work (see in Zadeh, 1 S; Bezdek and Sarkar, 1992).

No doubt, the present form of “soft threshold logic" as a continuous generalization
of binary threshold logic and its relationship to the chaos appears to be a most
promising theoretical subject. At the sap-2 time it might occur that chaos caused by
the introduction of fuzziness or non-degenerated measuring operators may restrict
the range of possible applications.

8. DISCUSSION

The main conclusion is that fuzziness - which is ubi uitously applied in
neurocomputers - may introduce chaos (or even confusion; Mendes France, 1989)
into the behavior of formal neuronal net or neurocomputer. After synthesis a tuning
of operator is required to avoid chaos and implications. However, the transition
between the sharply decisive dynamics of finite binary systems and chaos can be
controlled by the s :Fe parameter k. Chaos may occur in model networks (Labos,
1986; Derrida and Meir, 1988), the connection between the two paradigms merits
attention. The message for neuromputer science is that it is not sufficient to
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thesize a net let say by learning process, but still is necessary a tuning of the
threshold operator. The real neural systems, display aperiodic but stable behavior.
The presence of chaos in real nervous systems seems to be plausible (e.g. Freeman,
1987). But stability and reliability require deeper explanations.
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FIGURE 2 - Network of eight units. Next state plots. (1) Upper left: The binary
reference code trajcctoq_o L = 256 lengith maximal cycle. (2) Upper right and
later: Fuzzy operator of T is applied. The matrix and threshold is inserted mto the
\ég&ﬂ ngh: grame, k = 0.865; component 1; (3) k = 0.72; component 4; (4) k = 0.8;
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]

FIGURE 6 - Bifurcation
diagrams. Control parameter is
k. (A): n = 6; ¢ = 2; Matrix A;
cg-351264 ng-—4 is =0;
8; ¢ = 4; matrix A;

ﬂ) 42856137, ng = 6;is = 0.
on-fuzzy cycle length is
maximal. Values on Y-axis are
between 0 and 1; X- axis: goes

is k and goes from -0.5 to +0. 5.
More detailed matrix speci-
fications in Fig § and 6 see in
the quoted publications of the
first author.
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NEURAL NETWORKS : A SIMULATION TECHNIQUE

UNDER UNCERTAINTY CONDITIONS
M. Luisa Nicosia Mc Allister
Mathematics Department. Moravian College.
Bethlehem, PA 18018
. ) Tel 2158653187

Abstract
THIS PAPER PROPOSES A NEW DEFINITION OF FUZZY GRAPHS AND SHOWS HOW
TRANSMISSION THROUGH A GRAPH WITH LINGUISTIC EXPRESSIONS AS LABELS PROVIDE
AN EASY COMPUTATIONAL TOOL. THESE LABELS ARE REPRESENTED BY MODIFIED
KAUFFMANN FUZZY NUMBERS

.
A

§1 Introduction

Ever since F. Harary introduced the concept of
implication digraph in his 1965 text, much of the theory
developed has been of interest to applications involving
transmission. In this era of knowledge engineering,
artificial intelligence, and neural networks, the interest in
graph theory has grown because it provides a source for
problem solving techniques; see{15,18,21). How do we include
uncertainty in the representation and evaluation of
transmission through a network? To answer this question, it
is necessary to review some basic terms associated with well-
known techniques used in the evaluation of the flow through a
special type of graph. We want to emphasize that in using
{13,14] the mathematics needed to incorporate uncertainty
leads to easily applicable techniques which necessitate the
discussion of fuzzy graphs. Thus we propose here to conbine
the principles of fuzzy set theory with those of graph
theory. This combination may be applied to the problem of the
evaluation of a transmission through a neural network. What
imprecision do we have here that it is not handled by
probability means? Because of the vagueness and uncertainty
which occur in the simulation of realistically complex
situations, we have to resort to techniques which can handle
the vagueness of linguistic assessments. The modeling of
neural networks is thus proposed by assuming that the
concept of vertices being members of the vertex set and of
arcs being members of the arc set is not crystal clear. It is
susceptible to imprecision because of uncertain numerical
evaluations,see[13], or because of linguistic assessments,
see[14]. Thus using an approach according to fuzzy set theory
in [12], it is possible to generate a simulation representing
the imprecision, which is not of a probabilistic nature.

§2 Some basic terminology
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The term graph in this context will be used to mean
directed graph or digraph; see [1}.
Definition 13 A graph is called stochastic if the following
information is associated to each arc:
(1) The probablllty that this arc is selected;
(2) A random variable, such as *ime, is associated to each

Detinition 2: A stochastic graph is called a flowgraph if
there exists a sink and a source,and if two boolean
operators are associated to each vertex. The two operators
are usually the AND or the CRELSE.

" why do we need these operators? These operators control
the flow between vertices. The evaluation of the flcw is one
of the problems of interest when flowgraphs are implemented
in a simulation procedure. Generally, in- this type of
appllcatlons, each arc entering a vertex represents an
activity to be completed; see [2c]. When the AND operator is
associated with that vertex, it means that no new act1v1ty
can be pursued until all prev10us activities are completed.
When the boolean operator is the CRELSE then only one of the
entering activities must be completed before any new activity
can be pursued. An additional requirement for a digraph to be
called a flowgraph is that there ought to exist two special
vertices. Recall that in graphs where more than one arc
enters or leaves a vertex, we define for each vertex its

indegree, the number of arcs enterlng that vertex, and its
outdegree, the number of arcs leaving that vertex.
Definition 3: If there exlsts a vertex whose outdegree is
equal to zero then it is called a gink. A vertex whose
indegree equals to zero is called a sgource.

A flowgraph can concisely be defined as a stochastic
digraph with two special vertices; a sink and a source.
Flowgraphs have been successfully used to model the execution
of activities as depicted by the dlgraph. It is then a
natural extension to lnvestlgate their use when the network
under lnvestlgatlon is a neural network. Surprisingly, no
research efforts in such direction are known to this author.
However, this is not the focus of this paper. As stated in
the abstract, we propose here the use of fuzzy graphs as a
technique to experlment with. The transmittance thrcugh a
flowgraph were considered and solved by several authors,
primarily using Mason's rule which is the best known; see
[2]. A brief review of Mason's rule is glven in the next
section with some details. For additional details on
algorithus and examples see[2,2a,2b,3].

€3. Path Transmiitance in Flowqraphs: Mason's Rule
et R be an n x n matrix where the value of each entry

rij depends on a random variable. These values are obtained
from the characteristic moment-generating function for the
distribution of the random variable. Let P be a n x n
probability matrix where pjj equals the probability that the




arc (i,j) is selected. As a brief summary, basically, the
computation of the total transmittance along each path
requires the search of all paths in the flowgraph from source
to sink to be completed first. If we construct a new matrix,
called the transmittance matrix, and denoted it by T = (tij)
where each entry is the product of the a random variable with
the corresponding probability which is associated to that
arc; namely tij is the product of rij-and pij. If we assume
that the search of all paths from source to sink has already
been made so that we know all the paths and that there are gq
paths from source to sink, then the total transmittance is
computed according to Mason's Rule

q .

Y Wk (1 - det(Ty)} + (1 - det(T)),

k=1
where T, is a submatrix of T which is obtained from T by
removing from it the row and the column that correspond to
each vertex in the k-th path. The quantity Wx is the path
transmittance of the k-th path. Let the fuzziness of each set

be measured according to [4]; a method specifically designed
for graphs.

§4. Fuzzy Graphs

The first to consider fuzzy graphs were A. Rosenfeld in
(5,6,17},and R.T. Yeh with S. Y. Bang whose work is also
included in reference [17). Most authors, including this
author in {2b,2d}, defined a fuzzy graph as simply a graph
whose adjacency matrix is replaced by the membership matrix M
= (mgy) under the convention that if the entry mjs; = 0, then

the arc (i,j) has my4 as the evaluation of the membership.

There are two types of evaluations: the numerical, where we
generally have 0 < m; < 1, and that based on a functional

interpretation, namely, mjy = 0 is a mapping, or more
specifically a fuzzy number.

Definition 4: A fuzzy number is a convex, normalized fuzzy
set. At the conclusion of this work the suggested fuzzy

number will be denoted 2Z,. We define a fuzzy graph as
follows: Let V be the support set of the vertices. Let
My vV € [0,1].
Then the fuzzy vertex set is denoted by
vl = (v, my).
similarly, let the fuzzy arc set be denoted by af = (2, mp)
where m, maps the support set A, which is the crip subset of

the cartesian product of V with itself, into the interval
[0,1]. A fuzzy graph is then the pair of fuzzy sets, written
as, ct= (Vf, af ). In all of the above and in the sequel, the

superscript £ is used to remind us that the set is assumed to
be fuzzy. In this way, if mij= 0 then it means that there is




no link between the vertex i and the vertex j. If the
connection between the two links is not crystal clear then
mi 4 is either equal to some value between 0 and 1 or it is a

fuzzy number.

A fuzzy graph was at first defined as a labelled graph,
often without ever clarifying the necessary path algebra. A
natural path algebra to use here is the MIN or the MAX
operators which are commutative, associative, and
distributive. For a full discussion on path algebras with
exanples, see {19;pp.85-88]. Note that the set of labels can
consist of numerical values or of functional interpretations
of linguistic expressions. In the former case, i.e. for
numerical evaluations, the use of the MAX or MIN operators is
fairly straightforward. 1f functional interpretations of
. linguistic expressions are used as label, then fuzzy numbers
are used. However, in this case, the use of the MAX and MIN
operators is not simple to use unless we devise a method for
ranking fuzzy numbers.

A totally different definition of fuzzy graph is
proposed here after a brief review of the homology of graphs.

§5 Backqround on the Homoloqy of Graphg
Given a classical graph G = (V,A), we recognize two

vector spaces. The first is the vertex vector space, v:,and
the second is the edges vector space af.

pefinitions A fuzzy Graph is a pair of vector spaces et =

= _f . .. . . t4d s s . .
(V-,A" ). Is this definition conflicting with the previous

one? No, it simply identifies vf and af for what they
actually are: two vector spaces with the vector space
operations defined by

(m+h)(v) = m(v) + h(v) and (am)(v) = a m(v)

for every v in V and for any real or complex number a. The

dimension of the vertex vector space vi equals the cardinal-
ity of V. Note that in such case, the mapping my, maps the set

of vertices V into the set C of complex or real numbers and
the mapping m, maps the set of links A into C. Denote these

vector spaces respectively by v and Af. Thus a fuzzy graph

is a pair of vector spaces, G = (V‘,A‘). Having stated that
the use of the MIN and MAX operators is difficult when
functional expressions are associated with each arc, it seems
necessary to investigate how it is possible to solve the
difficulty. Some authors have worked successfully on the
ranking of fuzzy numbers; see {4] or the many papers by S.
ovehinnikov. Here, we propose the adoption of a somewhat
easier solution because of a special type of fuzzy numbers we




adopt. First we define the fuzzy numbers which will be used.
They are called the Rauffmann integers.

§7 Some reasons for the term: Kauffman integers

First, they are called Rauffmann as they were introduced
in {20]. Secondly, they are called integers because Kauffmann

shows in his book that they form a Peano System. A brief
review, for clarity of exposition, is given in §9. Note that
this derivation is the same as the one given in {20}. The
only new content given here consists of the propositions
below and the fact that since the convexity requirement is
satisfied but not the normality requirement. This is included
in the definition of a fuzzy number. The functional repre-
sentation is changed slightly.

§8 The Kauffman integers K,

In this section a brief review is given mostly following
Rauffman’s derivation, first, a set denoted (Kf)a is

constructed for which we then derive some useful properties.
They are called integers because Kauffmann also shows,

see[20], that by defining a suitable operations (Kt)u is
essentially like the set of whole numbers N.

P A A A A

§9 The construction of the set (Kf)a
Let the elements of a set (Kf)a be denoted by

b S
(K )a"{Kl'KZ'Kalaoc.oo,Kn, o-oo-}
where the subscript « is used because it is a parameter; any

positive real number may be used. In this section, the
elements K, will be derived by defining a unary operation

called the ‘successor' operation. First we will defire XK1 and
then we will obtain Kp recursively from Kj and Kp-1 for n 2
2. Then an explicit expression will be obtained for Kn.
(A) Construction via Recursiom: Let the first element Ki be
defined according to the following: f,(X) = « e~aX, ¢ > 0 and
let
Ky = { (x, £3(x))}- (1)

Denote the next element by

K, ={ (x £a(x)): x € [0,®) },
where the function £, (x) is computed according to the
following procedure:

X X
£,(x)= [ £ (t)E(x-t)dt = {'ae‘“te““*“t)dt = o xe~X  (2)
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for x € [0,»). Any element of the set (Kf)u is computed
recursively according to the following:

X
Cfa(x) = [ £ ) (B (x-t)ar (3)
with : ~
Kn = { (x,fn (X)) ¢ x € [0,»)}

for n > 1. Note that (3) essentially defines the desired
recursion operation to derive the elements of (Kf ar

(B) comstruction of an explicit Expressionm:Both K, and K,
have an explicit formula for £ (X) and f,(x). Can explicit
formulae be found for the other 2lements, K, = (X, £.(x))?
If so, we must be able to find an explicit expression for
f (x). Then, after a graphical interpretation, a few other

facts will be established so that comparison operations can
be easily identified and fairly simple to code.

Proposition 1: For all n 2 2, we have

anxn-le-ax
faX¥) = —EmIT
Proof: The expression of fp(x) holds when n =1 and n = 2.
Assume that it holds for (n -1) so that we have
; n-lxn-ze-ax

Q
fha1(x) = (n-2)t___ *
From the recursion definition it then follows that
X an _ X n-z
£a0x) = [ £(n-1)(t)E)(x-£)dt = mmar oKX J th=< qe.

Completing <the evaluation of <the integral we obtain
precisely the statement of the proposition.

The advantage of the explicit form is that we can find
the sketches of the membership function and its extrema and
so might devise a method for ranking these numbers in the
easiest possible way.

Proposition 2: For n > 1 each fn{x) has an absolute maximum
Mnp, with
_ o (n - 1)8-1
Yn = mo 1T et

and this occurs at x = & ; X

Proof: Letting the derivative of fp(x) equal to zero gives
the equation n - 1 - a x = 0 which has the desired value.
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Since the second derivative of fp(x) is negative for this
value of x, we have a maximum. It is an absolute maximum
because lim, .., fn(x) = 0. :

Note that this maximum needs not equal one.

Proposition 3: The sequence {Mp}, n > 1, is monotonically
decreasing.

Proof: We have Mz = g— and M3 = g 23. Therefore, M2 > M3. To
show that the statement of the proposition is true, we must
show that Mx < Mk.1 for all k > 3. Namely, we must show that
(k - 1)k=1 e=(k-1) <tk - 2){k-2) o-(k-2)
(k - 1)¢ (k - 2! ’
To show that it is monotonically decreasing we have to show
that the inequality Mk > Mk+1 holds for all k. Specifically
we must show that the inequality

(k ~ 1)k-1 e~(k-1) s (K e(k) (5)
k= 1)1 3)

is true by algebraically reducing it to a true statement.
after simplification and taking the natural logarithm of each
side, we have reduced the proof of the inequality (5) to the
verification of the inequality

(k- 1)ln k ; L, 1 > 0 or (k-1)ln k ; LN -1 (6)

If (6) holds, (S5) is true. Let p(k) = k 1ln E’§_T . Since

“ s X i .
p*(X) = ?§—1—377->.0, then p*(k) > 0 because k is a positive
integer. In addition, lim _,, pP(k) = 0 and it follows that
p(k) > - 1. Thus (6) is true. .

To visualize the elements of (K)o, nNamely some of the
pairs (x,Kn), it suffices tc sketch the functions fp(x) in
the first quadrant since x, n, and « are all non-negative.
The sketches in the figure at the end of this section provide

a graphical interpretation of three elements: the fuzzy sets
K,, K,, and K;. In fact, the regions on the plane over the x-

axis under the curves corresponding, respectively, to fl(x)'
£,(x) and £4(x).

§10 The Modified Kauffman Fuzzy Numbers Zn
Note that there is no value of x for which 3 achieves

the value 1 because there is no solution to x = eX, Thus
these numbers Kp are not normalized, and therefore are not
fuzzy numbers either. Since convexity holds it is easy to
verify that a minor modification of the membership function
satisfies the normality condition.




In fact, let gn(x) =1 + fn(xX),s0 that if x = 0, then
gn(0) =1. Thus, the element 2m = (X,gn(X)), X > O are convex
normalized fuzzy sets, and are therefore fuzzy numbers. The
letter Z is used to remind us that Prof. L. A. Zade first
introduced the concept of a fuzzy number and its computa-
tional applxcatlon to fuzzy quantifiers in natural languages.
See a detailed exposxtlon in the text [4].

Can we define an ordering for the fuzzy numbers Zn? Thig

can be done, besides using its maxima values, also by other
methods which are based on the next definition.

Definition 6: The height of the fuzzy set sf on any interval
[a,b] of the real line is denoted by h(sf) and it is defined

»by h(s )= max{f(x): x € [a,b]}.

We can apply this def;nmtion to the modified Kauffman
integers Z, because of the propositions above. We not only

know what their maximum value is but we also know where that
maximum is. Since the maximum need not equal one, the use of
the height is an alternative method which might be preferred
over the use of the maximum. We can order these integers
according to their height or according to the maximum M. We

know what this maximum Mp by the previous propositions. Thus
we have an easy computational method for their ranking.

§11 Some Concluding Remarks

It 1s a well-known fact that graph theory lends itself
to appllcatlons. Often, we find computatlonal techniques that
are proposed without paylng much ‘attention to the coding,
complexity, or storage difficulties. How do we store and
manipulate graphs with so much information? If the coding
language is Pascal, then it is recommended that each vertex
is represented by a structure which contains information of
the type: indegree, outdegree, etc. A similar structure is
used for the set of links. All structures are linked to one
another via linked lists.

A procedure called putnetwork outputs the graph and all
information about it. The determination of _paths is simpli-
fied because of recursion. The recursion is guaranteed to
stop because there is a finite number of links; as branches
are chosen, an array is passed down the recursion. Can we
make use of fuzzy graphs? 1In previous work, we found
applications for similarity relations which are important in
building practical programs for fuzzy 1n£erenc1pg we focus
on what happens to the concept of sxm:.larlty relations
between distinct sets. The idea of similarity is no longer
obvious. We find that k-partlte graphs offer an alternative.
An example of an application is included in previous work.
Fuzzy bipartite graphs were a problem solving tool for
J.Dockery and L. Mc Allister [2¢,2d]. For example, in [2¢},
the authors focussed on what happens to the concept of
similarity relations between distinct sets. The idea of




.similarity is no longer obvious. They find that fuzzy
kpartite graphs offer a pictorial and computational alter-
native. Rn example of an application was included there.

Ma=a2

My=2afe?
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Abstract

In this paper, the implementation of a fuzzy data processing system using an artificial neural nei-
work (ANN) is discussed. The binary representation of fuzzy data is assumed, where the universe of
discourse is decartelized into n equal intervals. The value of membership function is represented by a
binary number It is proposed that fuzzy data processing be performed in two basic stages. It is pro-
posed thai incomplete fuzzy data processing be performed in two stages. The first stage performs the
“retrieval” of incomplete fuzzy data, and the second stage performs the desired operation on the
retrieved data. The method of incomplete fuzzy data retrieval is proposed based on the linear approx-
imation of missing values of the membership function. The ANN implementation of the proposed sys-
tem is presented. The system was computationally verified and showed a relatively small total error.

1 Introduction

Fuzzy data processing systems that perform fuzzy operations can be implemented using standard
or specialized software, but the ultimate way is to implement them in hardware. In fuzzy data pro-
cessing systems, the major functions are performed by fuzzy processing elements like Min, Max,
Bounded or Absolute Difference, etc., which can be connected in different ways (for instance, Min-
Max-Min), depending on the desired structure. Building fuzzy data processing systems is attractive;
however, in practice (i.e, in contro! systems) many inceming data to the system are incomplete (e.g.,
disturbed, noisy, or damaged). As a result, the output data generated by the system are wrong or con-
tain an unacceptable errors that may cause a series of problems, especially in real critical applications.

Signal processing using a fuzzy approach has become more attractive during the last few years,
when fuzzy sets and tools have been applied successfully to a variety of tasks. These tasks cover dif-
ferent areas of applications from speech and image processing to various pattern classifications [3].
Although the early stages of fuzzy signal processing mainly involving pattern recognition have been
successfully developed, fuzzy methods for data processing (such as operations on various pattems)
are yet to be developed. In the previous paper [2], ANN (Artificial Neural Network) realization of the
fuzzy operations addition, subtraction, multiplication, division, minimum, and maximum, using neu-
ral networks, was studied. The conclusion of [2] indicates that the best results (in terms of average
error) for fuzzy operations using ANN can be obtained when the operations are performed on nonde-
generated fuzzy data. In contrast, the results of fuzzy operations using ANN performed on degener-
ated fuzzy data contain relatively high error. To overcome these disadvantages, the two-stage fuzzy
data processing system is proposed in the present paper. The first stage performs the incomplete fuzzy
data retrieval, while the second stage produces the results of a desired fuzzy operation.

The paper is organized in the following way. First the theoretical background for the reirieval of
incomplete fuzzy data is given. Then the ANN realization of the retrieval stage is presented. The prac-
tical example, discussed in Section 2, shows the two-stage fuzzy data processing system (preproces-




sor performing fuzzy data retrieval and processor performing one of the discussed fuzzy operations).
Finally, the simulation results for the systerh-are presented, foliowed by the conclusions.

2  Fuzzy data retrieval o
The discussion of the fuzzy data retrieval begins with the definition of the fuzzy number [1].
Definition 1. A fuzzy number X=(x;} is defined over a normalized set A on the real line R such
that: R

3x;eR, sup pa(x;)=1 (EQ1)
The p4(.) denotes a membership function of x; in A and the xg referred to as the mean value of A if
Ka(xg)=1.
Assuming the discretc representation of the fuzzy num ber, the ordmary fuzzy number! can be
described in the following way: :
Definition 1A. Any fuzzy number X can be descnbed ina ﬁmte domam {x;}, by

n £
X= o3l

€Q2)

imt Y
where i = 1,..., n and n defines the number of equal intervals into which the fuzzy number X is dis-
cretized and T denotes the union operation,
Based on the Definition 1A, there must be a mean value for the ordinary fuzzy number, and the
EQ2 car. be rewritten separately for the left and right intervals around xg as follows:

& Ba L5 )
X=X-Ternt L ox EQ3)

(assuming Xy, 1=X0).Such a representation is called the *‘discrete representation” of fuzzy number.
The special case of discrete represeniation, dxgual representation, is commonly used in most current
applications of a fuzzy technology. Hence, universe of discourse is discretized into n intervals, each
of which will be called “bit” by analogy with a digital representation of a number. However, any
value from the interval [0,1] can be assigned to each bit of a digital fuzzy number. Additionally, it is
assumed that the unimodal fuzzy numbers are discussed in this paper.

Definition 2. The degcnerated fuzzy number Y is the number with missing membership values Hy
of one or more bit positions (Fig 1).

. By () | My (¥)

l
|||i I|||I|L. o.|||| Ll

@ X0 X ®) Yo y

Figure 1. Digital representation of ordinary fl(nzzy number (a), and degenerated fuzzy number
b).

22 2 2 3
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It is assumed in this paper that the discussed fuzzy numbers are unimodal. Let us now consider the
degeneraied fuzzy number Y and their retrieval system.

1. The term ordinary fuzzy number is used for fuzzy numbers in the sense of Definition 1.
2. Aspecial case of the degenerated fuzzy number with missing snembership function values for all bits are not discussed in this paper.




Definition 3. The fuzzy number retrieval system (see also [6]) is defined by a triplet: (¥, Y™, p),
where Y is a degenerated fuzzy number, ¥” is a retrieved fuzzy number, and p is the retrieval func-
tion:

P HAQY') = HAG") Vy'e Yand y” € Y (EQY)

where — represents a mapping relation.
Hereafter we use a simplified notation: y1,(y) = pt.representing the membership function value of
Y at the bit position i. ’
Definition 4. The fuzzy data retrieval function is defined by
Plity) = By =Ry (EQ5)
where Y is suppose to be an original fuzzy number which is free of missing bits (see Fig 1).

Hy. R Rt
1 I
J p(u.y ' ): u Yr e
4 —_——p
i | - |
ol 11111 , 1.y o | y
i Yo Yn Yl Y0 Yn
Figure 2. Interpretation of the definition of fuzzy retrieval system. Y represents the original
number.

The characteristic of the retrieval function depends on the particular application. The implementation
of a linear approximation technique, which seems to be good enough for most practical applications
of fuzzy logic to the fuzzy data retrieval, is described below. In the process of approximation of the
missing values for the membership function, two basic cases should be distinguished.

Case 1.

The membership function missing values correspond to the bits which are not: first {y; }, last {y,}
nor mean {ygp}. The number of bits with missing values in the left or righi intervals can be arbitrary. In
this case, the retrieval function simply extrapolaies the membership function missing values based on
the existing nearest values:

B, - 6
p(“v) =y A 7,."+)" (EQ )
! s Veat

Assuming that there are k missing bits, which start from srh bit, the membership function values can
be obtained by incorporating yg, Ys41s-s Ysek into EQT. Note that, in such a case, it is necessary to
approximate the membership function to the ncarest available level of quantization. Let us consider
the simple example where the number of bits with the missing membership function is equal to one
(m=1). The bit number with tx¢ missing membership function in the degenerated fuzzy number is
denoted by k. In such a case the membership function for the bit k can be approximated by!:

u’n ' - l‘,'_ '

wo= int[y
N Yoy~ Yie

*’)’k-l) (EQ7

1. In this context the int function means the evaluation to the nearest quantization level.
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If forany i # k the 21, then the B, is set to 1 (see Fig.1.a).

Case 2. -
The membership function missing values correspond to the bits which are: first {y) }, last {yp} or

mean (yp}, or contain these bits. In this case, the retrieval function simply extrapolates the missing
membership values.

i . W :
o ) retrieved (v ) retrieved
)1 k+1 value H k+1
e j«
] g >t
KOk-1) approximation KO g1) 4 approximation
functi » .
. :m 1on . . . function .
@ v, Yy Yeer B Y Yk Yeer Y2 Yk

Figure 3. Example of membership function retrieval by linear approximation for a single bit
(a), and for three bits missing (b). Black square represents known value and empty square
represents retrieved value.

Let us consider the example where only single bits {y;}, {y,}. or {yp} are missing. In such a case
the missing membership function values can be calculated using the formula given in EQ8. The only
difference is that instead of calculating the membership function for the center bit, the one for the
boundary bit is calculated. - )

The case where several bits have missing membership function values is not trivial and needs more
discussion. It is proposed that the missing membership function values for the boundary bits (for left
and right intervals) can be evaluated using the linear (prediction) function calculated based on the
membership function values for the last two boundary bits!. Assume that there are two linear func-
tions calculated for left and right intervals with the intersection point below 1 (see Fig.4 a). In such a
case the mean value of a membership function is approximated to the nearest neighbor for any miss-
ing values of y; and finally for the mean value p(yg) is set to 1: p(yg) = 1.

w0 {1t — oo

J value 4

J approximation :
myp.pq e . . funcno?s oy Hoppqe ) . ) y
@ i Yo Yo Yo Yt ® Yup Yy Yo Y Yirel

Figure 4. Example of membership function retrieval by linear approximation for several bits
including the mean value: intersection point below 1 (a), intersection point above 1 (b).
Then new approximation functions are obtained based on the parameters of point (1, yp), and last
left [lu(yy), yyl. and first right [y ). yg] bits (see Fig.4 a). Assume that there are two linear functions
calculated for left and right intervals with the intersection point above or equal to 1 (see Fig.4 b). In

1. The procedure for detennining missing values for membership function is discussed later in this sectios.
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such a case the x coordinate for the mean value is approximate to the nearest y; neighbor: then Yi=Yo
and li(yo) is set to 1: u(yg) = 1. Thea new approximation functions are obtained based on the parame.
ters of point (1, yg), last left (1(yy), ynl. and first right (HCyg). Ygl bits (see Fig. 3 b). With these func-
tions already calculated, the missing membership function can be cvaluated using the formula giv
in EQ7.

Case 2a, -

The subcase 2a relates to the situation when the unimodal fuzzy number might have trapezoidai
membership function. If such a case may origin when approximation functions (calculated based
upon the existing values) “clamp” more then one quantization intervals (see Fig. 5). In this case the
membership functions values czn be simply approximate by setting their values to one.

B Z
oo . lxgi;ved
value

approximation
TIVATIE)) . functions y
-1 Yy Yo Y 7

Figure 5. Example of membership function retrieval for the fuzzy number with trapezoidal
membership function.

3 Linear approximation procedure and neural network

As it was proven in {5], any continuous function can be uniformly approximaied by a continuous
ANN using one hidden layer and with arbitrary contituous nondecreasing function. Such chanacteris-
tic can be utilize to a task of the approximation of missing rembership function values by the linear
combination of existing values. Therefore, the linear approximation procedure should be used to
obtain the training data set for ANN. Note that only sclected membership function values are used for
evaluation of missing values. The following architecture was assumed for the ANN impiementation
for fuzzy data retrieval. ANN consists of an input neuron layer (I), a hidden neuron layer (H) and an
output neuron layer (O).

Input
Layer

Figure 6. Structure of the ANN.
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Each layer is completely connected, meaning that each neuron from a given layer is connected to
all neurons of the next layer. A unique weight is associated with each connection. It was assumed that
for fuzzy data retrieval the number of neurons in each layer equals to the number of bits in fuzzy
number. Figure 6 illustrates the details of the discussed ANN configuration.

Now, the problem can be reformulated into whether it is possxble to obtain sets of weights which
minimize the total error of the linear combination of all existing membership function values with
tespect o the linear combination procedure. In the proposed method the output of the ANN which
represents a retrieved membership function value w4 for i-th bit can de described by:

M N
uh = 8( XY Vii( ) P'g"“j&)) (EQ8)

j=l k=]
where g(.) denotes activation function, p denotes p-th input patiern, y? denotes the membership func-
tion value, Vj; represents weigh between i-th output layer element and j-th hidden layer element,
while w;y nepresems weigh between j-th hidden layer element and k-th input layer element (Fig. 6).
The pmposed linear approximation procedure used for i-th bit membership function value retrieval

can be formally described as:

vl

Z (a0 (€EQ9)
1= §-
where a is an arbitrary coefficient (for i#j). Then lhe typical error function can be given by:
I M N i+ l
6= 3o Sevs( S uton))- T o] J (€Q10)
pil V=l ku) jmi=i

This is absolutely continuous, differentiable function of weights, so matrices w and V can be found
minimizing the error using backpropagation method. For hidden-to-output and for input-to-hidden
connections the steepest descent rule (which is a basc lor backpropagation methed) gives:

ivl

oV 2[ (ygxgvﬁ(kgl uzwjk))_; ,‘; l(uL P")] (gle;j(kélﬁfW;g)) (kg' M Ik] FQm
o3 Bl 5 el Bl S oo oo

Therefore. the sysu,m proposed before [2] was extended by the preprocessing stage incorporating
ANN for degenerated fuzzy numbers retrieval followed by the Fuzzy Data Bus and the system for
realization of {uzzy operation. The result also shows that it is not necessary to implement a special
type of ANN, like that one suggested in {7}, in order to obtain a good approximation of a fuzzy oper-
ation supplemented with the retrieval stage.

4 Computer simulaticn results

" The data for training the retrieval ANN was prepared incorporating the linear approximation pro-
cedure in such a way that the degenerated fuzzy numbers were set to the input pattern and retrieved
fuzzy numbers were set to the output pattern. Up 10 70% of bits with missing membership functions
was included in the set of 1024 degeneraied [uzzy numbers (32 bits each). The PlaNet [4] simulator
was used to train (with backpropagation proccdure implemented for updating the weights) the ANN
to the moment when average error (for all patterns) was less than 0.0001.




The fuzzy data processing system consists of two stages, the first stage performing fuzzy data
retrieval (described in Section 3), and the second stage performing six basic fuzzy operations
(described in [2]). The original architecture of the system described in [2] is illustrated in Fig. 7. In
order to incorporate the retrieval stage, the original architecture was extended, by incorporating the
additional stage.

The main goal of the application of this stage is (o obtain retrieved fuzzy numbers available on the
Fuzzy Data Bus for further processing. Note that the subsequent stages can perform simple (such as
addition) as well as complex fuzzy operations such as inference, so such a system perfectly matches
the general fuzzy modeling requirements. In the presented system the second stage networks are
designed to perform addition, subtraction, multiplication, division, maximum and minimum (to be
consistent with previously designed system). Table | summarizes results (average errors) obtained
from the training pattern and testing pattern The training pattern contains randomly generated ordi-
nary fuzzy numbers for six second-stage networks performing fuzzy operations. The testing pattern
contains only degenerated, randomly gencrated fuzzy numbers, with missing membership values ran-
domnly distributed over the bit positions. o T

TABLE 1. Comparison of average errors for testing (degenerated) pattern obtained from second-stage
ANNs performing: addition, su traction, multiplication, division, maximum, and minimum,

Pattern  Addition Subtraction  Multiplication Division Maximum Minimum
Training  0.000353 0.000335 0.000395 0.000219 0.000382 0.000331
Testing (d) 0.004032 0.005630 0.009541 0.007680 0.006516 0.005766
Input 1 Input 2
I Input Fuzzy Data Bus ]
Addition Subtraction ultiplication Division Maximum Minimum
Network Network Network Network Network Network
® * *x *
I Output Fuzzy Data Bus l

Figure 7. Architecture of the original fuzzy data processing system based on the ANN [2).(*
: denotes the different data bus width as a result of fuzzy operations).

As one can see, the errors obtained from testing patterns including degenerated fuzzy numbers are
five to ten times greater than original training errors. If we include in the simulation the ANN retrieval
stage (average training error less than 0.0004), then the results obtained for testing patterns can be
summarized in the Table 2.
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01 Q02 Q03 e Oi-
Addition Network _ Subtraction Network , Minimum Network

Figure 8. General architecture of fuzzy data processing system using ANNs.

TABLE 2. Comparison of average errors for testing (degenerated) pattern obtained from the proposed fuzzy
data processing system including fuzzy data retrieval stage. Second-stage ANNs perform: addition,
subtraction, multiplication, division, maximum, and minimum.

Pattern Addition  Subtraction  Multiplication Division Maximum Minimum
Testing 0.000643 0.000761 0.000577 0.000867 0.000742 0.000522

Figure 4 illustrates a fragment of the fuzzy data processing system, extracted from the original
design (see Fig. 3), including the retrieval preprocessor. The values of membership function are coded
in forms of sequence of squares. The area of a single square for a specific bit relates to the member-
ship function value in such a way the largest square represents 1 and the smallest .1 (the empty place
indicates 0). Two 32 bits long fuzzy numbers are set to Inputl and Input2 (data on Inputl is degener-
ated: missing membership function values for two bits). Then they are processed in the retrieval ANN
(Hidden1(32b) and Hidden2(32b)). Finally, the retricved numbers are displayed in Hidden3 layer
(compare Inputl&Input 2 and Hidden3(64b)). Then, these two ordinary numbers (first retrieved and
second original) are processed in the subsequent network (Hiddend (64b), Hidden5 (64b)), producing
the result of operation (in this case, addition) at the Output (64b) [4].

572




MeAworts NirveS4 NNd1<32 Nhid2= 32 Nni3+54 Naid4 54 Nnid5=64 Nouls64 L8.av

sttt

............................

cnes-BoneRe BB coemgen-nenl

Figure 9. Example of the fuzzy data processing system applying fuzzy data retrieval
preprocessor and the network performing fuzzy addition. (At the top, the trace of average error
for training this part of a system is shown).

5  Conclusions

In this paper the implementation of a fuzzy data processing sysiem using artificial neural networks
is described. As it was verified in (2], the average crrors for the testing patterns containing degener-
ated data were about two 10 five times greater than the average error for the normal testing data. In
order to support fuzzy addition, fuzzy subtraction, fuzzy multiplication, fuzzy division, maximum
and minimum for the degenerated fuzzy pumbers the preprocessing stage devoted to fuzzy data
retrieval was designed, wrained, and incorporated into the fuzzy data processing system. The retrieval
process was based on the linear approximation and prediction of the existing data for the incomplete
fuzzy numbers. Such an architecture significantly improves the accuracy (up to ten times) of the
results of operations performing on the degenerated fuzzy pumbers; however, with the increase of
missing membership function values, the average crror also increases. The results of testing of the
proposed system show that when up to 30% of membership function values are missing, the average
error slightly increases (up 10 five times). Conseguently, from 30% to 50%, the error is oné order of
magnitude higher. Finally, from 50% t0 15%, the error can be ten to one hundred times greater than
that for the training data. Due to these advantages the proposed architecture for fuzzy data processing
systems may be very attractive in practical applications, especially in the case of processing heavily
damaged fuzzy data by the real-time fuzzy logic controllers.

One should also stated the main advantage of ANN application to the real-time control consisting
of the adaptive changing of the fuzzy model implemented through ANN, zlong with changing of the
process under control. Such a feature is necessary when fuzzy controller is suppose 10 control
dynamic, time-variant system.
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Abstract

[T S N .

An expandable stochastic digital architecture for recurrent
(Hopfield like) neural networks is proposed. The main features and
pasic principles of stochastic processing are presented. The
stochastic digital architecture is based on a chip with n fully
interconnected neurons with pipeline, bit processing structure. For
large applications a flexible way to interconnect many such chips
is provided.

Introduction

The analog implementation cf Hopfield neural network is of
actual interest [S5]. Due to the great complexity of the
interconnections and to the presence of parasitic coupling path,
analog recurrent networks are prone to follow incorrect trajectory
or to oscillate. This reduces by an order of magnitude the number
of neurons that can be built on a chip. In the same time, large
applications require to interconnect many such chips. Due to the
parasitic capacitance that distort the analog signals, this becom2
another difficult task. A digital stochastic architecture avoids
these problems. Here the signals are wore easily passed between
chips and are less modified by noise. By using a tine-multiplexed
structure, the connectivity is greatly reduced and so leads to
flexible mwmulti-chip systems. Recurrent networks operate by
accumulating small changes into the neural state. This integrative
process has a lowpass filtering effect, reducing also the inherent
stochastic processing noise [2].

Following, an overview of the methods for information digital
stochastic encoding, as well as some arithmetic computing elements,
are presented. In the next sections our approach is detailed by
providing: the algorithm, the block diagram of the proposed neural
chip, and a detailed description of the synaptic and neural
processors. Finally, the system expendability, reliability and
reconfigurability are treated along with discussions on execution
speed.

pigital stochastic encoding of information
A stochastic encoder ijs basically a tunable random pulse
generator. The probability of occurrence for a pulse, i.e. the mean

pulse rate, is controlled by the input to be encoded in such a way,
that
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p(x) = Sy / Sau (1)

In equation (1) p(x) is the probability that, the binary randonm
pulse train assumes a value of 1 at a moment. S;, is the value to
be encoded, and S, represents the maximum possible value for the

‘'signal S. Thus the probability of a pulse in the pulse train is

proportional to the normalized input signal. The basic circuit for
encoding a digital signal (number) “into a random pulse train with
appropriate probability is shown in figure 1.

The number N is compared with a random number R, uniformly
distributed over {[Rmin,Rmax]. The output of the comparator will
pulse if R < N, crating a stochastic firing signal X, whose mean is
proportional to N provided N is in [Rmin,Rmax]. The stochastic
encoding represents an analog signal mapping. By using non-weighted
bits in a code of infinite word length, it is extremely noise-
proof. In the same time it has an adaptive accuracy. As information
is recovered through a pulse counting process, one can at any
moment decide for a fast but imprecise or for a slow but accurate
response. The computations are easily performed on such signals
using space- and speed-efficient digital logic {4}.

Arithmetic computing elements

The basic arithmetic computing elements used in this approach
are: multiplication, counting/accumulation and linear/nonlinear
transfer functions.

For example, if two statistically independent binary random
pulses, x and y, with probabilities p(x) and p(y) are ANDed, the
result has the probability: :

p{r) = p(x) AND p{y) = p(x)*p(y) (2)

That is, a multiplier in a stochastic architecture is a simple AND
gate.

The easiest way to perfore the accumulation function, which is
equivalent with an integration operation, is to use a counter. For
a neural processor, this will count the nuaber of pulses which
results from the multiplying operation between weights and neural
outputs. .

In simulating neural nets, the most time consuming operation
is to apply the transfer function, which usually is a nonlinear
one, to the neural state and obtain the neural output response. The
use of stochastic encoding provide significant time gain in
performing iinear/nonlinear transfer functions. Returning to the
digital-to-stochastic converter, one can see that the mean value of
the output binary pulse train is:

<x> = Pr {R < N} : (3)

which is the cumulative distribution function (CDF) of R. If N is
the value of the neural state u(t), and x is the neural output
pulse train, then the transfer function can be modified adjusting
the probability distribution fr..ction (PDF) of the random number
generator (see figure 1.a,b,c). While a uniform PDF gives a linear
transfer function with hard limits, a PDF like in figure l.c gives
the more used sigmoidal transfer function.

576



The stochastic architecture

The equation governing the integration of charge in the
Hopfield network is:

.1

If the time slice dt is much smaller than the main integration
period, so that the capacitor voltages do not change too much,
equation (4) can be approximated by:

(5)
u,(ndts dt) = u,(ndt) + T,Vi(ndt)de

Therefore, in dt time, for each neuron j, the summation of only one
product T(;V;, to the state u,;, is performed.

The architecture based on (5) has N neurons operating in
parallel, at the clock frequency f,, and an execution speed of N*f,
connections per second.

As long as the time-multiplexing implied by (5) has not
prevented proper convergence or caused fault operation [1],
equation (6) also holds true:

'
u,(ndtr dt) = u;(ndt) + z ;‘ (ThoangVenan(nde)) d (6)

where n*b < N. Thus, in dt time the summation of (n*b) products
(TiyVi), to the state uy, is performed. In this way the state update
speed can be enhanced n*b times,

The digital stochastic architecture proposed in this paper is
based on equation 6. The basic building block is a chip with n
fully interconnected neurons, operating in a pipe-line, bit serial
manner on words of b bits length. The chip is depicted in figure 2.
There are two types of processors: Synaptic Processors (SP) and
Neural Processors (HP). Bach synaptic processor, SP;;, performs one
product and two summations in parallel in a clock period. It
contains a comparator Comp and a counter Count which are organized
on bit serial, pipe-line structure (figure 3). The weight shift
register (WSR) has a set of K registers on b bits word length.
Skewing the outputs of the WSR aad of the random number generator
(RNG), every clock period Ty, a pulse with probability proportional
to |Tyl. results at the output of the comparator. The weight
nultiplication is performed by ANDing this signal with the neural
output value received on V; line. The result is added or
substracted, to/from Count if ¥T;; is positive respective negative.
This represents the summation over r index in equation 6. After b
clock periods the content of Count is trasfered to the shift
register (SR), and Count is reset. The value in SR is added
serially with the value u’y(i-1), resulting u’,(i). The value a’y (1~
1) is a partial sum of tke neural state u;(t) computed in the
previous cycle in the (i-1)th stage.
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The neural processor NP; has a bit serial adder, a digital-to-
stochastic converter and a shift register which store the neural
state value (figure 4). Every b clock periods, a new partial sum
u’y(n) is added to the neural state u,(t). This pr&cess represents.
the summation over h index in equation (6). :

The lines V;, ,i=1,n, are internally connected to SPy,, j=1i.n,
and are also uszed to interconnect chips forming large systems.
External logic is needed for recovering the mean value of the
signals which are the neural activity information.

Expendability, fault tolerance and speed

In large applications, which require a grate number of
neurons, say N, K chips must be used (k = [N/n] + 1). By providing
the SP with K, weight registers, the neural network will be’
extensible to M, neural processors. K, is also the maximum number
of chips that can be connected in a system. Such a system is
organized around a n bits bus. In a period T,, only one chip puts
on the bus the output values of its neural processors. All chips
will read these values, performing the state update function. This
is done once, for each chip, after what the cycle is repeated.

This type of architecture, implying the connection to a unic
bus, allows the number of neural processors to easily be changed by
inserting or removing chips. In the same time, if a chip contains
too many defective elements it may be bypassed by desselection. In
this moment, an idle, unused, chip will replace the detective one.

The weight update speed can be evaluated taking into account
that the total number of neurons in a system is N = K*n, and the
number of weights is W = (k*n)?. In each chip, for each neuron,
(n*b) connections are computed in b clock periods (t,), the speed
being: .

S = (K*n’)/T, = n*N*f, connections/second (7)

For example, a system with n = 100, K = 10 and £, = 100 MHz,
has the execution speed S = 10'' connections/second. This value is
well above any reported implementations.

A time-multiplexed architecture performance parameter, is the
neural state update speed (NUS). NUS is the number of products
(TiyV;) added to the neural state in unit time. For the previous
reported implementation {1}, the NUS was equal to f, values per
second. In our architecture NUS reach (n*f,) values per second.

Conclusions

A stochastic digital architecture for networks of the
recurrent type has been described in this paper. The low-pass
filtering, integrative nature of these networks vas well-suited for
an implementation based on stochastic techniques bhuilt from
entirely digital circuitry. The combination of all-digital signals
and pipe-line, bit serial processors led to a system which could be
spread across multiple chips. The reduced interconnectivity of the
VLSI system made dynamic reconfigurability and fault tolerance easy
to achieve.
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Abstract The issue of matching two fuzzy sets becomes an essential design aspect of many
algorithms including fuzzy controllers, pattern classifiers, knowledge-based systems,
etc. This paper introduces a new model of matching. Its principal features involve: (i)
matching carried out with respect to the grades of membership of fuzzy sets as well as
some functionals defined on them (like energy, entropy, transom), (ii) concepts of
hierarchies in the matching model leading to a straightforward distinction between
“local” and “‘global” levels of matching; (iii) a distributed character of the model realized
as a logic-based neural network.

Keywords matching, hierarchical model, local and global level of matching, logic-based neural
networks

1.Introduction

Defining and handling problems of matching fuzzy sets (linguistic quantities) has become a
domain of intensive research dating from the very emergence of fuzzy sets.The abundance of the
matching methods available nowadays is evident. Different approaches stemming from measuring
distances between membership functions, calculating possibility and necessitiy measures, using
fuzzy measures and integrals, to name a few among them, give a good impression about their
variety, cf. [4], [5], [6].

The proposed model embraces three new features being nonexistent or not fully addressed in
the framework of the previous methodology. They are, however, important in dealing with fuzzy
sets. One should stress that fuzzy sets form a collection of objects b~longing to a given category to

a certain degree. As such the grade of membership at x, € X does not exist in isolation and is
usually related ( affected) by other membership values that the fuzzy set takes on in the neighbourhocd
of this point.This fact implies that this phenomenon should have a direct impact on the development
of matching procedures.

Firstly, the two levels of hierarchy at which the matching process is carried out are distinguished:
(i) a local level of matching dealing with the grades of membership of two fuzzy sets pertaining to
the same element of the universe of discourse, and (ii) a global level of matching where all those
“local” characteristics are summarized (aggregated).

Secondly, the local level of matching should also handle several criteria of matching not being
exclusively restricted to the analysis of the grades of membership of the objects. Some other
functionals defined over the membership values (like entropy,energy or transom) might be worth
considering in this context.

The discussed model of matching is fully distributed and utilizes logic neurons (8], [9} to
constructively accomplish matching at the indicated levels.

.In the remainder of the paper we will consider fuzzy sets defined in a finite universe of
discourse, say X = {x,, ..., x,}. The discussion regarding the local level of matching will be
covered in Section 2. In Section 3 we will proceed with the global level of matching showing how



different elements of X interact within the process of matching. The learning algorithm leading to
parametric adjustments of the connections in the model will be studied in Section 4.

2. The pointwise level of matching of fuzzy sets

Let us discuss two grades of membership at a certain element of X, say a ='A(x)), b = B(x,) -

where A and B are fuzzy sets. The general questionarises: why are these fuzzy sets similar or what
makes them different? First of all itis likely that a very preliminary answer to this problem can be

formulated by studying the corresponding values of the membership functions of A and B.They -

are usually deemed essential in expressing similarity between fuzzy sets.
One among existing alternatives useful in describing similarity of fuzzy sets could be the use of the
following equality index cf. [7]:

asbea=b=g[(wb>A(bcpa>+(sv6m5¢5>1 (1)

where the 9-operation (pseudocomplement) is defined as foilows:
apb=sup{ce [0,1]latc<b}

and “t” denotes a triangular norm while “A*“stands for minimum. The equality index attains 1 if
and only if the arguments are equal, a = b. It should be stressed that the values produced by the
equality index are not context sensitive,viz.this index produces the same result once a mutual
position of the arguments is the same.This means, for instance, that0.1=0.1=1aad 0.9 =09 =
1. This could cause undesired lack of discriminatory properties of this definition. On the contrary,
it could be propitious to discriminate between situations where matching achieved for the higher
membership values such as 0.9 and 0.8 is more significant than the one reported for the lower
values ,say 0.05 and 0.2. One of feasible solutions to this deficiency would be to perform (1) not
only on the membership grades but also on their functionals. We will study three weli-known
families of these membership functionals: : -
- energy-type functionals [1], [2) compute values of a certain monotonically nondecreasing
function defined over the original membership values,say y,: {0,1] = [0,1] where v, is a
monotonically nondecreasing function. For instance, one can refer to polynomial-type

energy functionals of the form y,(u)=v®, p> 1;
- entropy-type functionals, cf. [1] [2],are defined as mappings y,: [0,1] —» [0,1] such that
(i) ¥, is monotonically increasing over [0, 1/2] and
(ii) v, is monotonically decreasing over [1/2, 1].
Moreover cne assumes that the functionals attain maximum at 1/2, y, (1/2)=1.

- transom-like functionals [10], {11] remind the functionals of the first class .The modification
is such that low and high grades of membership (i.e., the values lying around 0 and 1) are

ignored. One can characterize these functionals as y,: [0,1] =» [0,1], such that
y,(u) =0,ifus o, :

W, (u) = ¥, (u), if u € (a, B), and

y;(w)=0,ifu2f

where o and P are threshold levels.
The examples of these functionals expressed with the aid of linear or piecewise linear
relationships are included in Fig. 1.
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Fig. 1.Examples of functionals Vi.Ya2,y3
Here we have:
Y=y, ue [0, 1]

W,{uy=2u,ue [0, 12} and V,(W=2(1-u),ue [172, 1]
and
V() =y ()1 - a)-1(u- g
where 1 denoies the unit step functionie. 1(u-£) =0, u < Cand1u-Y)=1,u> L.
Generally speaking, the result of this “local”™ ( pointwise) matching can be summarized
(aggregated) in a logical way as:

2 =[(wiltAxi) = wi(B(x,) OR wy] anp [bwftaxd = b)) oR wy) anp
-~ AND [{w(Alx) = w(B(x,) OR w,] @
where w,, i =12,

are weights (connections associated with the consecutive degrees of
equality, while “z” denotes an overall level of matching obtained at X;. The weighis modulate
influence of the individual components on the local result of matching,

From a structural point of view (2) can be treated as an AND logical neuron, cf, [9], see also
Fig. 2.
VilA(x)]=y,[B(x;))

WA=y B .,

Wp

VelAlx) ey, [B(x;))
Fig.2 AND logic-based neuron




The appropriate values of the connections can be derived through supervised learning. We will
discuss this issue in great detail in Section 4. o
In order to emphasize the local character of matching and explicitly indicate the arguments
standing there (elements of X) we will introduce a two-vanable predicate MATCH_LOCAL(x,, x,)
which is defined as follows, _ .

MATCH_LOCAL(x,, x) = [{w1(A(x;)) = wy(B(x;))) OR ws] AND ... _

N AND [(w(Ax)) = vg(B(x;)) OR w;]
ij = 1,2,....,n

3.Global level of matching

When it comes to the global level of matching involving all the elements (pairs) for which the local
matching operation has been accomplished we can think of the following model, :

. y =OR [MATCH_LOCAL (x;, x;) AND v;] 3
i,j = 1,2,....n
where v,, i,j € [0,1] are connections modelling the influence the results of the local matching have
on the gfobal level. '

MATCH_LOCAL(x;,xj)

OR

N\

Fig.3.0verall matching. model »«\

The complete structure composed of the processing units described by (3) is given in Figure
3. The grid of points shown there is formed by considering a Cartesian product of X's.

The entire model can be viewed as a heterogensous OR-AND logic neural network, see [9].
The compact notation applied to it will then look like this,

y=MATCH(A,B)= OR [MATCH_LOCAL(x, x) AND v,] 4
xp x)€ XxX

where the OR operation pertains to the arguments of the Cartesian product XxX. The AND and e




OR operations are modelled by triangular norms (t- and s-norms, respectively). This implies the
following system of relationships, .

MATCHAD)=, S,

MATCH LOCAL®, )= T

 TW(AGD) = wi(BOx) s wi) C©

Expressions (5) - (6) form a basic distributed and hierarchical model of matching.
In the foregoing section we will investigate a problem of parametric learning in (5) - (6). This
will include the connections v, and w,.

4. Specializing the model of matching- a parametric learning in the network -

Since the structure of the model has been already developed ,now one has to determine its
connections w = {w,}, 1 = 1.2,..pand v = [vyl ij=1,2,....n .This is carried out on the basis of
a training set of data. It consists of pairs of fuzzy sets A,, B, and associated results of matching
reported there. Denote them by t,, k = 1,2,...,N. Usually we can concentrate on a simple scenario
in whicht, € {0,1}. Ift, =0 the corresponding pair (A,, B,) delineates two fuzzy sets which are
different. On the other hand, if t, = 1, A, and B, are viewed as being similar.

The learning (adjustments) of the connections is completed in the supervised mode. One
presents A, and B, to the model and compares the obtained result MATCH(A,, B,) with t, : if these
are different then w and v have to be modified to reduce this difference. A convenient performance

measure guiding the adjustments of the connections (parametric leamning) is a sum of squared
errors.

N
Q=2 [t - MATCH(A,, By . )
k=1"

Then a standard Newton-like method is exploited to produce the required modifications of w and
v,namely, /

w =w - 10Qow
v=v-hoQ/ov

where 1 is a leaming rate controlling a speed of changes of w and v.
The derivatives are computed in a standard way,

N
22 _ 23" (- MATCH(A,, By PMATCH(A, By
ovij k=l dvy

IMATCH(AL By _ 3

2 v
JV:, vvu

[ii. i1 = L2.n [MATCH_LOCAL(x;, x1) w“'“]] =

= a—j— [[IMATCH_LOCAL (x;, x;) tvijlsS;]
ij
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where S, abbreviates the result obtained for the computations carried over the elements of XxX
different from x, and x;. The detailedcalculations can be; pursued further upon specification of the
triangular norms. For ihe connections w we derive similarly,

N
2 _ ¥ - MATCHA By AT By
owp k=1 aw; R
and
OMATCH(A, Bo) _ 2 dMATCH(Ay, By N OMATCH_LOCAL(x;, x;)
oW1 i j=1.3..n SMATCH_LOCAL (xi, x;) 3w
Subsequently we conclude
dMATCH(A, By  _diS2 {MATCH_LOCAL(x;, ;) tvij]
SMATCH_LOCAL (xi, X;) OMATCH_LOCAL (x;,x;)
with
S;= S . [MATCH_LOCAL (xi1» X31) tvin il
i1, j1, il#i, j1#)
and finally

aMATC“-;‘OCA"("“ %) _ [Ty (AGD) = Wi (BOg)) swil
W1

Ty = 1:51 (y11(AGx,)) = W12(B(z1)) swil

The following example serves as an ilustrative material showing how the hierarchical model of
matching can be developed

Example The fuzzy sets used in this simulation experiment are given below:

Matching
X, X, X; Xy X, X &
a=lods on 02 ] Bi=los 0.9 0051 1.0
Az=[0.1 0.3 0.58 ) B2 =10.15 1.0 oo1] 0.0
A3=[0.25 0.4 1.0 } B3 =[0.5 1.0 07 1 1.0
As=[0.45 1.0 0751  Ba=[10 0.2 045] 0.0

This synthetic data set includes some pairs of fu.zy sets exhibiting equality (1,=1) and difference
between A, and B,’s (¢,=0). We will consider the functionals W, ¥, and y, shown in Fig.1(for
the transom functional we seta. = = 0.1)..

The network is described with the use of (5) - (6), the performance index is given by (7) and

n = 0.2.THe process of learning is visualized in Fig4.
The results gen:rated by the network are given below

P T AP TEaEre—

Matching (t,) MATCH (A,, B,)
1 1.0 0.71
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2 0.0 0.33
3 1.0 0.64
4 0.0 0.43

Even though theoutcomes in these two columns are numerically different,they become qualitatively
equivalent after thresholding applied to the results produced by the matching model.Let us define a
threshold @peration :
t(a, M) =1ifazrhand 1t(a,A)=0ifa<A,

a, Ae [0,1]. '
where A stands for the threshold value.One can easily verify that for all A from (0.43,0.64) the

results produced by the model (after thresholding) are equivalent to the these included in the
training set.

2.0
15
performance
Indesc 18
5
@
0 100 200 308 408

lcarning epech
Fig.4.Results of learning in the network
5. Conclusions

We have developed a distributed model of matching of fuzzy sets utilizing AND and OR basic
computing elements. It has been shown that they carry out “local” matching which is realized at
the level of each element of the universe of discourse and includes both grades of membership as
well as some of their functionals. The global level aggregates them in a disjunctive form.

The idea of the distributed logical processing can be also found useful in developing models of
fuzzy set connectives or designing non-pointwise decision-making procedures.
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Abstract

This paper addresses the issue of applying a globally convergent optimization algerithm to the training of multi-
layer perceptrons, a class of Artificial Neural Networks. The multilayer perceptrons are trained towards the solution
of two highly nonlinear problems: i) Signal detection in a multi-user communication network and ii) Solving the
inverse kinematics for a robotic manipulator. The research is motivated by the fact that a multilayer perceptron is
theoretically capable of approximating any nonlinear function to within a specified accuracy. The algorithm that has
been employed in this study combines the merits of two well known optimization algorithms, the Conjugate Cradients
and the Trust Regions Algoritkms. The performance is compared to a widely used algorithm, the Backpropagation
Algorithm, that is basically a gradient-based algorithm, and hence, slow in converging. The performances of the two
algorithms are compared in terms of the convergence rate. Furthermore, in the case of the signal detection probiem,
performances are also benchmarked by the decision boundaries drawn 33 well as the probability of error obtained in
either case.

I Introduction

Artificial Neural Networks (Neural Nets for short) are densely interconnected layers of relatively simple processing
units called nodes, that are interconnected through links called weights, (w represents the weight vector). The output
of any mode in a layer is a nomlinear function of a weighted sum of inputs from nodes in the previous layer. Due
to the nonlinear characteristics of these networks, they are used for a wide variety of nonlinear mapping problems.
This paper deals with two specific applications : detection of a single user’s signal in a2 multi-user communication
channel and solution of the inverse kinematics for a robotic manipulator. The neural net used in these problems is
the multilayer perceptron. -

Multilayer perceptrons are a class of feed-forward astificial neural networks {1, 2, 3] with one or more layers
(termed hidden layers) between the inputs and outputs. Their use in this context is based on the fact that mu'tilayer
perceptrons with a single hidden layer are theoretically capable of approximating any nonlinear function to a desired
accurzcy (4], The general classification/mapping problem can be reduced to solving an optimization problem as
shown below

w,= nggnéi.n‘ ew): R" — R. - - (1)

The optimization algorithm used ., calculate w, that solves (1) is termed the training algorithm of the multilayer
perceptron. The error function e is typically taken to be an average of the sum of the squares of the differences
between the desired and actual (produced by the neural net) outputs to given inputs
1 P M
dw)=3 212(46(7; @) -di(p)’, @)
p=l m
where di(p) is the i** component of the the desired ontput vector, i.e., the desired output at the #* node (of My

output nodes) corresponding to the p* input pattern, di(p; @) represents the actual output and p = 1,..., P
represent the total number of training pattegns presented to train the neural network.
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General optimization problems as in (1) have no analytic solutions and hence, iterative oplimisation schemes
that yieid a series of converging approxiinations to w, are employed to solve (1). The focus of this research is
the development of an efficient training algorithm that performs “significantly better” than the widely employed
backpropagation algorithm [1, 3, 5, 6]. Since the backpropagation algorithm is a gradient-based algosithm (it is based
on the steepest descent algorithm) it exhibits very poor convergence properties, being 2t best lineasly convergent {7,
8, 9]. We investigate aa optimization algorithm that combines the merits of two well known optimisation algorithms
: the trust region elgerithms and the conjugate gradient algorithm. The resulting algorithm, termed the Conjugate
gradient-Trust region (CGTR) algorithm has been shown to exhibit superlinear convergence properties [10, 11}. The
CGTR algorithm significantly outperforms the backpropagation algorithm in the applicaticns considered.

II Multilayer Perceptrons

Multilayer perceptrons form a particular class of neural networks and are capable of approximating aay noalinear
measarable functions. Specifically, it has been shown by Hornik, Stinchcombe and White {4] that a two-layer
perceptron, i.e., a perceptron with an input layer, one hidden layer and an output layer of nodes, is sufficient
to achieve this approximation. This capability has been exploited in various fields including speech recognition,
signal and pattern classification and universal approximation (see references in [1]). With reference to a single-user
detection problem in a multi-user commaunication channel, wherein the optimal decision boundary has been shown
to be a highly noalinear curve in the signal space [12, 13], multilayer perceptron receivers have been observed to
perform better thar conveational technigues {14]. In this study we apply the multilayer perceptron, which is trained
using the CGTR algorithm as opposed to the conventional backpropagation, to the two specific problems at hand,
signal detection and nonlinear mapping.

~=— layer | - layer 2: -

(dl)

Figure 1: Typical Structure of a 2-Layer Neural Perceptron

These networks consist of an input layer of nodes, one or mote layers of hidden (i.e., intermediate) nodes and
a layer of output nodes (Figure(1)). The nodes in a given layer are connected to all the nodes of the next (upper)
layer. Therefore in an L-layer perceptron, the output of the #** node of the €7 layer takes the value
My - .
v = g( Z wg-?vg-";) -ws,?), i=12,---, M, t=12,---,L, (3)

=

where M, denotes the number of nodes in the £" layer, w‘(,-f) denotes the weight associated with the connection
between the j** node of the (£ — 1) layer to the i** node of the £* layer and Wi is the conesponding threshold.
The function g(-) is the nonlinear transformation at the output of the * node of the £** layer, called the activation
or squashing function. In this model, u§°) represents the j'* input to the network and Mo is the total aumber of
inputs. The measure of the error €(-) that arises n- turally from the network configuration is the average sum of
squared errors which is calculated as in (2) with difpiw) = vS")(y_) representing the actual perceptron output.

1For details regarding the different types of convergence see {7, 8).
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III Conjugate Gradients/Trust Regions Training Algorithm

The CGTR algorithm is a nested combination of the trust regions algorithm and the conjugate gradients algorithm
that attempts to circumvent the limitations of both schemes. In order to illustrate the properties of the proposed
training algorithm, a brief overview of iterative optimization algorithms is presented below, with emphasis on the
trust regions model and the conjugate gradieat algorithm.

The basic optimization problem can be formulated as in (1), where e(w) is A twice contisuously differeatiable
fanction of w. The main strategy in most optimization algorithms is to approximate the noalinear function e(w)
about the point , by a second order Taylor series expansion, called the guadratic model of € at w,

ma(ay +2) = elay) + Velwa)"e + 3¢ He, @

where H represents the Hessian matrix of ¢ ie., [H)i.; = ®¢/dwidw;. One optimisation scheme is to successively
minimize the function along the steepest descent direction, i.e., the negative gradient at each point. Thiz algorithm
has beer found to possess extremely slow (linear) convergence properties. The prevalent Backpropagation algorithm
is based on the steepest deaceat algorithm.

An alternative clana of algorithms that are extremely robust with respect to the wide variety of functioas to
which they are applicabie are the trust regioa algorithms. The main idea behind these methods is that the given
nonlinear fanction is approximated fairly accurately by a Taylor’s series quadratic model ouly in some region around
the current point. This leads to the following formulation of the optimization problem

min ma{w, +2), subject to [l < 8, (5)
2ER"

where ma(w, +3) is as defined in (4), 2 is the step taken and &y is a parameter that can be interpreted as an
estimate of how far we “trust” ma(w, +3) to accurately model the actual function e(w) in a neighbothood aboc:
w,. The parameter 6x is accordingly called the trust radius. The trust region algorithm can then be succinctly
stated as minimizing m{w + 3 ) over a compact domain in 8 at cach iteration. This problem has been shown to have
a unique solution (7, 15, 16] for arbitrary H, but is numerically intractable.

The conjugate gradients algorithm is am algorithm that arrives at the minimizer of a positive definite n-
dimensional quadratic function (i.e., the Hessian H is positive definite) in at most n steps [9, 17, 18, 19), taken
along mataally H-conjugate? directions. It is 2 computationally simple and clegant algorithm that has minimal stor-
age requirements. The rate of convergence of the conjugate gradients algorithm is found to depend on the condition
number x of H [9, 17, 20, 21). Therefore, the convergence rate could be enhanced by suitably modifying the Hessian,
clustering its eigenvalues and thereby decreasing x. This technique, known as preconditioning, is achieved by affect-
ing a linear transformation of the variable space. Notwithstanding the attractive features of the conjugate gradients
algorithm, it is shown to be numerically unstable when applied to non-positive definite functions [20, 17, 18, 22}.
Therefore it has to be used in conjunction with a method that allows for indefinite Hessians.

The proposed CGTR algorithm effectively combines the merits of both the above stated algorithms (10, 11}. The
problem addressed is as posed by {5), with the imposed constraint being |lsllc < §i, where sz =(s,Cs) C
being the preconditioning matrix. The conjagate gradients algorithm is embedded in the trust region model and
scrves to arrive at the minimizer of mx(w, +3) at each iterate w,, while the trust region part decides whether a
particular w, reached is a “suitable” point or not. The trust region algorithm governs the global convergence and
thus enables the CGTR algorithm to effectively deal with non-positive definite Hessians. Thic algorithm has been
theoretically shown to be superlinearly convergent to a minimizer of the nonlinear function ¢ {10, 11}.

IV Applications

In view of the deficiencies in the existiag tramining algorithms, there is a neel for the development of faster and
more robust algorithms. This paper discusses the application of the CGTR algorithm to the training of multilayer
perceptrons for signal classification and nonlinear mapping (inverse kinematics) problems based on their universal
approximation capabilities [4]. The multilayer perceptron is trained in both cases by presenting a set of input data
and minimizing the resultant error function between the desired and actual outputs of the network to arrive at an
optimal weight configuration w,. The input-cutput set in the signal detection scenario consists of P pairs of the
sampled received signal vector and the cotresponding classificztion, while in the solution of the inverse kinematics
of a robotic manipulator, the input-oat:” ~ set consists of P pairs of end effecter (see Section IV.2) coordinates and
the corresponding joint angles. Figure 2

2Two directions p; and p; are said to be H-conjugate directions if p ?Hp, =0Vi#j.
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Figure 2: Structure of a Neural Net Receiver for Single User Detection in Multiuser Channels.

IV.1 Single User Detection in a Multi-user Communication Channel

We investigate the feasibility of using multilayer perceptrons with the proposed training algorithm for the detection
of signals transmitted by a single userin a multi-user channel with additive Gaussian notse. The neural net receiver
is configured to demodulate the particular user’s signal in the presence of other interfering signals. This is shown to
be equivalent to approximating a nonlinear function, the optimum decision boundary (12, 13]. Figure 3

In the general multiple-access communication network [14], K transmitters are assumed to share a radio band
in time and code domains. A particular user’s transmitted sigmal is a binary signal set derived from the set of
coded waveforms assigned to that user. We assume that we are interested in the demodulation of the first user’s
information packet. The signal at the receiver is the sum of the K transmitted signals in additive channel noise
(which is assumed to be Gaussian here).

Sigaal Space

matched
fikey boundary —ea.

a:n

Figure 3: Optimum Decision Boundary for the Detection of a Single User in a 2-user Channel

The sampled input vector R, to the neural net receiver (see Figure 2) can be written s0 that the demodulation
of the first -ignal is viewed as the following classification problem:

Ho:R=+A1a" +a+]
Hi:R=-AgM +n+] (s)

wherz _u_(" is the spreading code vector of the first user and _1_yis alength- N vector of filtered Gaussian noise samples. In
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this setting, [ represents the multiple-access interference vector, i.e., the interference due to the presence of the other
transmitted signals. The optimum decision boundary for the general single-user detection problem in the preseace
of interfering users has been found to be a highly nonlinear surface in the signal space{13}. Thetefore conventional
matched filter techniques, which generate only linear detection boundaries (see Figure 3} fail to accurately demodulate
the desired user’s signal.
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Figure 4: Decision boundaries drawn after training with the CGTR and BP algorithms.

Performance Analysis

Toillustrate the potential of the multi-layer perceptron for signal detection, a relatively simple example involving the
detection of a single user’s signal in presence of only one other interfering user is considered. The network used for
this problem is a two-layer perceptroa with three nodes in the middle layer. This is based on work done by Aazhang,
Orsak and Paris [14] who have conjectured that, since the optimum decision boundary can be approximated by three
straight lines, three nodes in the middle layer are sufficient for near-optimuin demodulation.

Training of the multi-layer perceptron is performed by presenting a fixed number of input vectors to the network
and specifying the corresponding desired outputs. The error function obtained is then minimized with respect to
the network weights using the CGTR method. In the case of the signal classification problem, the £ input data
represent observations of R, i.e., actual signal locations with additiv . noise. The relevance of using signal with noise
as training data lies in the fact that in a practical application the neural net receiver would be receiving ncisy data
and would have to detect the vresence of a particular user in the presence of additive noise as well as interfering
signals. Therefore. training the multilayer perceptron with noisy data makes the detector insensitive to perturbations
in the incoming signals.

The performance of the multilayer perceptron trained by a particular algorithm in the case of the detection of
a single user in the presence of interfering users, is assessed by the proximity of the decision boundary drawn by
the multilayer perceptron to the optimum and the average probability of mis-classification. Figure 4 shows the
decision boundaries drawn by the meural net receiver trained with the CGTR and backpropagation algorithms.
As can be seen, the decision boundary drawn after training with the CGTR algorithm closely approximates the
optimum decision boundary, while the neural net trained with the backpropagation algorithm is only able to linearly
approximate this nonlinear function. Further comparisons of performance can be made by obscrving the plots of the
peobability of error for the receiver versus the ratio of the signal-noise-ratios of the two signals after training with
both the algorithms, as seen in Fig 5. The first plot in Fig 5 depicts the probability of error (Pe) graphed against
the zatio of SNR1 (signal-noise-ratio of user 1) to SNR2 (signal-nuise-ratio of user 2), with SNR2 fixed at 6dB. The
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Figure 5: Probability of error vs ratio of the SNR’s of the two signals.

second piot depicts Pe graphed against the ratio of SNR2 to SNR1, with SNR1 fixed at 6dB. As car be seen in both
plots, the receiver trained with the CGTR algorithm yields a lower probability of error compared to the receiver
trained with backpropagation.

IV.2 Inverse Kinematics for a Robotic Manipulator

The capability of the multilayer perceptron for function approximation is further tested by training it via the
preconditioned CGTR algorithm to approximate the inverse kinematics for a robotic manmipulator. We brielly
describe the inverse kinematics problem: for a rokotic manipulator. For further details the reader is referred to
{23, 24, 25]. A mechanical manipulator or arm can be modeled as an interconnection of several links, each of which
is connected to its predecessor through a joint. One end of the arm is attached tc a base and the other end, to an
end-effector or gripper. Robot manipulator kinematics deals with the analytic study of the motion of the robot arm
with respect to a particular coordinate system. The inverse kinematics problem for a robotic wmanipulator involves
the determination of the individual joint angles (angles between successive joints) 8(t) = [61(2),...,04(1)]7, given
the spatial location of the end-effector z (t). This problem is solved using the equation

z(t) = f(8(1), (7

where f is a nonlinear function. In general, for most manipulators there dozs not exist a contimuous analytic f?
over the whole space cnd even if it does, its solution can be anajytically and numerically combersome.
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Figure 6: Bi-linked robot arm. Each link is assumed to be rigid and of length 0.5 units.

In this paper we attempt to solve the inverse kinematica problem by training the multilayer perceptron to
approximate f~!. The robotic masipulator arta consideted in this study is a planar bi-linked arm, i.e., an arm with
two segments constrained to lie in a single plane, as depicted in Fig 6. The joint angles 6(2) and 8;(1) are calculated
as

2L|L2

- afzal) . - Lasin62(t)
6(t) = tan 1 (-;:—(6) tan™? (‘——————L|+ch;az(t)) (8)

The neural net is trained using the CGTR algozithm to approximate the above system of nonlinear equations.

() = cos™ (z?(t) +z3(t) ~ L] -~ L%)

Performance Analysis
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Figure 7: Multi-layer perceptron error function with increasing training set size.
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The training is catried out by presenting pairs of input vectors and the corresponding desired joint angles to the
neural net and minimising the corresponding error function, as in (2), using the CGTR algorithm. The network
configuration considered for this example is a three-layered network with 4 nodes in each of the middle layers. It has
been observed that a three-layer network with as few as four nodes in each of the middle layers yields much better
performance than a two-layer network with as many as 30 nodes in the middle layer. The number of input and
output nodes correspond to the dimension of the work-space and the number of joint angles respectively. Figure 7
shows the change in the perceptron training error (for the three-layer perception with 4 nodes in each middle layer)
with increasing training set size and as can be seen, the error stablizes aftez a certain point (400 points in this case).

V Conclusions

We bzve demonstrated the potential of the CGTR trzining algorithm for multilayer perceptrons and compared it to
the sxisting backpropagaticn algorithm. The CGTR algorithm performed significantly better than backpropagation
in the appiications considered. Specifically, in the case of the detection of a single transmitter’s signal in the presence
of interfering users, the network trained with backpropagation was 20le to draw only a linear decision boundary
compared to the near-optimum decision boundary obtained by training with the CGTR algorithm. Correspondingly,
training with CGTR resulted in a lower probability of error. In the solution of the inverse kinematics problem, our
precursory results have demonstrated the effectiveness of the CGTR algorithm in enabling the multilayer perceptron
to successfully approximate the nonlinear functions involved. Further research is being carried out using two-layer
perceptrons with a larger number of nodes in the middle layezs as well as four-layr perceptrons.
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ABSTRACT

Several probability-possibility transformations are compared in terms of the
closeness of preserving second-order properties. The comparison is based on
experimental results obtained by computer simulation. Two second-order properties
are involved in this study: noninteraction of two distributions and projections of a
joint distribution.

1. Introduction

During the last three decades or $o, science has been undergoing a major
paradigm shift involving attitudes towards uncertainty. The many facets of this
paradigm shift are well described in a book by Smithson [1989].

The old paradigm is characterized by the pursuit of absoiutely certain
knowledge or, if impossible, by resorting to probability theory, as the only legitimate
mathematical tool to deal with the lack of certainty. The new paradigm, on the
contrary, is not only tolerant of uncertainty, but it views uncertainty as an important
resource in pursuing knowledge. While uncertainty is not desirable for its own sake,
its role to counterbalance complexity is crucial when complexity is unmanageable or
when dealing with it is prohibitively expensive [Zadeh, 1973]. When the solution to
a problem is not required to be uncertainty-free, the computational complexity
involved may often be substantially reduced [Traub, et al,, 1983].

In order to utilize uncertainty as a strategic resource, we need to understand
it as broadly as possible. It turns out that probability theory does not facilitate
sufficiently broad framework for this purpose {Klir, 1989a]. As a recognition of the
limitations of probability theory, two generalizations in mathematics have emerged.
One of them is the generalization of classical set theory into fuzzy set theory, which
allows us to deal with sets that do not have sharp boundaries [Zadeh, 1965; Klir and
Folger, 1988]. The second is the generalization of classical measure theory into
fuzzy measure theory, which allows us to deal with measures that are not additive
[Sugeno, 1977; Wang and Klir, 1992]. These two theories can be combined.

Fuzzy set theory and fuzzy measure theory, as well as their combination,
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provide us with a very broad mathematical frameworks for investigating uncertainty,
within which various special theories of uncertainty can be formulated, Only two of
these special uncertainty theories are of our interest in this paper: classical
probability theory and possibility theory. We assume elementary knowledge of these
theories [Klir and Folger, 1988]. I

As we argue elsewhere [Klir and Parviz, 1992a}, probability theory and
possibility theory are complementary, but not comparable. They are capable of
describing different types of uncertainty. It is often desirable to transform
uncertainty described in one of the theories to the complementary description in the
other theory [Dubois and Prade, 1986; Bharathi-Devi and Sarma, 1985; Leung, 1982:
Moral, 1986; Klir, 1991]. Several distinct, transformations have been proposed in
the literature for this purpose. Our aim in this paper is to compare these
transformations in terms of the closeness of preserving second-order properties. The
comparison is based on experimental results obtained by computer simulation.

The paper is a continuation of a previous study [Klir and Parviz, 1992b].
While the previous study focuses only on one second order property, joint
distribution calculated from two noninteractive marginal distributions, this paper
covers also projections of given joint distributions. Furthermore, it describes results
based on a slightly different measure of uncertainty that the one employed in the
previous study. The new measure of uncertainty emerged recently as a better
justified alternative [Klir and Parviz, 1992¢].

2. Probability-Possibility Transformations Investigated

In order to describe the probability-possibility transformations that are the
subject of our experimental stud , let

P = (Py Py Pa)s
r=(r,r,.,r,),

denote, respectively, an ordered probability distribution and the correspondi
ordered possibility distribution. We assume that Pi 2 p,iandr; 2 1, foralli = 1,
2, .., n-1. According to normalization requirements of the two theories, pi+p, +
w+p,=landr =1

The first type of probability-possibility transformations P < r that are covered

by our study are transformations based on ratio scales. They are expressed by the
equations

)
P

L

1

Pr= @

I, *+I, "'...“’l"I

The second type of transformations p «» r, which are often cited in the
literature, were proposed by Dubois and Prade (1982, 1983, 1986]. They are defined
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by the equations

ri ’jg min(Pij): ' (3)
P; ’i -('l-'!-:—.l:j—’—ll; (4)
=i J

where r,,, = 0 by convention.

The third type of transformations p +» r, which are asymmetric, were
proposed by Dubois, Prade, and Sandri [1991]. In one direction, p — r, they are
defined by the equation

I, =i: P ©)
j=i

In the other direction, r — p, they are defined by Eq. (4). ,

The fourth type of transformations p > r, which were proposed by Klir {1989,
1990}, are transformations that preserve uncertainty. It was shown by Geer and Klir
[1992] that unique transformations of this kind exist only under log-interval scales.
They are defined by Egs. I and IIl in Figure 1. The vaiue of a in these equations is
determined by solving Eq. II in Fig. 1, which expresses the requirement that the
amount of uncertainty be preserved when p is transformed to r or vice versa.
Functions H, N, S in Eq. II are defined by the following formulas [Klir and Parviz,
1992c¢; Klir, 1993):

H(p) = -3 Pilor,p, O]

N(r) = E (r,-1,,,)log, i, )
i=2

SO =3 (-1, logy . @)

i=2

)R/
ji=1

Function H is the well-known Shannon entropy [Klir and Folger, 1988], and
functions N,S are referred to as nonspecificity 1nd strife, respectively.

Since the value of S(r) is severely restricted when compared with the value of
N(r), as shown by Geer and Klir [1991] and Klir and Parviz [1992c}, the term S(r)
plays a relatively minor role in Eq. II. To study the effect of this term on results, we
performed experiments both with and without the term. Furthermore, we performed

also experiments in which function S in Eq. II is replaced with function D defined by
the form
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n~-1
D()=-Y (r;-r,,,)log,|1 -i ©)

i=1
This function, referred to as discord, was employed prior to the discovery of the
latter justified function S (Klir and Parviz, 1992c}. We have performed experiments
with both functions in order to compare their performance.

That is, our experiments involve six distinct probability-possibility

transformations. The following are convenient abbreviations of these
transformations:

L ﬁ
X, G il

j-i’l

«RC - ratio-scale transformations defined by Egs. (1) and (2);

«DP - transformations proposed by Dubois and Prade [1983], which
are defined by Egs. (3) and (4);

*AS -~ asymmetric transformations defined by Egs. (4) and (5)
[Dubois, Prade, and Sandri, 1991);

*NS - transformations that preserve uncertainty, which are defined by

Egs. I - Il in Fig. 1;
N - same as NS except that $(r) is excluded from Eq. IT;

*ND - same as NS except that S in Eq. I is replaced with function D
defined by Eq. (9).

3. Description of Experiments

Two classes of simulation experiments regarding the six types of probability-
possibility transformations are reported in this paper. The purpose of experiments
of the first class is to compare the transformations by the estimated average degree
to which they preserve joint distributions constructed from noninteractive marginal
distributions. The estimates are obtained by experiments of two

In each experiment of the first type, marginal probability distribution p, and
p, are chosen for some n 2 2. Assuming that p, and p, are noninteractive, we
calculate the joint probability distribution p by taking the pair-wise product of their
components. Next, we convert p,, p, into the corresponding marginal possibility
distributions r,, r, by each of the transformation methods and combine each pair of
distributions by taking the pair-wise minimum of their components. This results in
one joint possibility distribution for each transformation method, which we convert
(using the same method) to the corresponding probability distribution p’. Now, we
determine the closeness of p' to p in terms of these criteria: Hamming distance,
Euclidean distance, and the maximum error.

Experiments of the second type are similar, but they begin with given
marginal possibility distributions, r, and r,, for which the joint possibility distribution
r is calculated by using the minimum operator. The given distributions are also
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transformed into the corresponding marginal probability distributions p, and p, by
each of the method. Joint probability distribution p i then calculated for each pair
Py, P, and transformed (by the same method) to the corresponding possibility
distribution r’. Finally, r and r’ are compared in terms of the same criteria as in
experiments of the first type.

The purpose of experiments of the second class is to compare the six
transformations by the estimated average degree to which they preserve marginal
distributions calculated from given joint distributions. Two types of experiments are
again distinguished, depending on whether the inputs are probability distributions or
possibility distributions. The results are compared in terms of the same criteria as in
the experiments of the first class.

‘4. Experimental Resuits

Experiments of the two classes and both types were performed for selected
values of n, from n=2 to n = 25. In each category and for each particular value of
n, the performance of transformations RS, DP, and AS was compared with the three
variants of uncertainty-preserving transformations, ND, NS, and N, in terms of the
Hamming distance, the Euclidean distance, and the maximum error.

Results of experiments of the first class that are based on ND are published
in a previous paper [Klir and Parviz, 1992b]. They demonstrate, with considerable
consistency, that the uncertainty-preserving transformation performs best according
to each of the three indicators and that its relative performance increases with
increasing n. The results also show that AS is substantially outperformed by all the
other transformations.

After these initial results, we extended the experiments of the first class to NS
and N. We discovered that NS also performs better than RS, DP and AS, but it is
slightly outperformed by ND. However, the difference between the two
performances decreases with increasing n.

The behavior of N, which is illustrated by the selected data in Table L, is
more interesting. While N is comparable with or even slightly weaker than RS and
DP for small values of n (approximately n < 5), it outperforms all the other
transformations (including NS and ND) for large values of n (approximately n 2
10). For both types of experiments, the table is divided into three parts that contain
values of the Hamming distance, the Euclidean distance, and the maximum error (in
this order). Each column in the table represents one of the four conversion
methods, as applied in experiments of either the first type or the second type. All
entries in the table are average values based on 100 experiments for randomly
selected marginal distributions.

Results of experiments of the second class for n = 5, 10, 15, 20, 25 are given
in Table II (first type) and Table III (second type). As ir Table L, the three parts in
cither table contain values of the Hamming distance, the Euclidean distance, and the
maximum error. Covered are all the six transformations introduced in Sec. 2.

We can see from Table III that each of the uncertainty-preserving
transformations heavily outperforms transformations RS, DP, and AS in experiments
of the second type. The order of the transformations by their performance is
consistently N, NS, ND, DP, RS, AS according to each of the three indicators. The
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strong performance of transformations N is rather surprising,

According to experiments of the first type (Table II), the transformations are
less discriminated by their p&rformance, but NS (and ND, to a lesser degree)
consistently outperforms the other transformations. The performances of N, RS, and
DP are comparable and consistently higher than the performance of AS.

5. Conclusions

From all experimental results obtained in this experimental study, which are
exemplified by five selected values of n in Tables I - III and in our previous paper
[Klir and Parviz, 1992b], we may conclude that the uncertainty-preserving
- transformations are superior in terms of the degree to which they preserve the two
second order properties investigated. This is not surprising sincs the uncertainty-
preserving transformations neither loose information nor add ~xtraneous information
by the transformation process itself. It is reasonable to expect th:-t the same

conclusion will be obtained for other second order properties, such as conditioning
or joining of overlapping distributions. We intend to validate this conjecture by
additional experiments.

Although we consider three variants of uncertainty-preserving
transformations, NS, ND and N, the differences among their performances are not
large. This is a result of the fact that functions S and D are bounded from above by
the same value, which is rather small [Geer and Klir, 1991]. One the whole,
transformation N appears to be the best choice, not only due to its high performance
in most cases, but also due to its simplicity.

Functions S and D (and the associated functions NS and ND) are still
somewhat controversial as measures of possibilistic uncertainty, while function N
alone does not represents the whole uncertainty [Klir and Parviz, 1992c; Klir, 1993]}.
If this controversy is resolved by determining a fully-justified measure of total
uncertainty, the performance of the resulting uncertainty-preserving trarsformation
will almost certainly outperform all the three currently considered uncestainty-
_preserving transformations.

Transformations NS, ND and N are based on log-interval scales and, as a
consequence, they are unique. Uncertainty-preserving transformations may also be
based on ordinal scales. Such transformations, which are not unique, may give us a
greater flexibility in achieving desirable results, such as preserving best certain
second order properties of the given distributions, maximizing the degree of
probability-possibility consistency, and the like. A formulation of ordinal-scale
transformations that preserve uncertainty and discussions of several other issues
regarding probability-possibility transformations are included in another paper [Klir
and Parviz, 1992a]).
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TABLE 1. Experiments of the first class (from marginal distributions to joint
distributions).
First Type Second Type

s N RS DP AS N RS DP AS
5 01701 0ams 01632 07416 1892 2070 27518 66134
10 017% 02010 0.189 05238 51834 65029 2750 176543
15 o 02044 0.1963 08502 poss | 19761 | 210 | 45340
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10 00231 0.0259 0.0291 02419 0550 Ny o9 2.1100
15 00151 007 0.0207 0.1907 1L01% 15935 1632 13802
20 o112 00134 00155 0.1569 1m 20014 21138 425%
25 00092 o013 00130 0.1367 15634 24T 26088 50969
s 00207 0019 0.0296 027 0150 020m 0.1968 0212
10 0.0058 0.0071 00163 02197 01597 oxm 02460 04258
15 0.0026 0,003 0012 01656 0154 029% 02959 04283
20 0.0015 0.0020 0.0066 01311 0.1550 02019 001 042B
25 0.0010 0.0014 0.0050 01113 0.1550 02648 031 0AAS
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TABLE II. Experiments of the second class and first type.

‘n NS ND N RS DP AS

S 0.24% 0.2606 02473 0.2651 0.2676 0.2495
10 0.2006 0.2096 0.2024 02126 02152 02591
15 0.1812 0.1814 0.1849 0.1826 0.1842 0.2148
20 0.1518 0.1528 0.1555 0.1537 0.1551 0.1766

10 0077s 0.0805 0.0783 00815 0.0825 0.1005

15 00571 00573 oosss | oosm 0.0582 0.0684

20 c.0418 0.0421 0.0428 0.0423 0.0427 0.0485

25 0.0350 0.0349 00359 0.0351 0.0353 0.0%91

s 0.0945 00971 00944 0.0984 00993 0139

10 0.0466 0.0430 00472 0.0485 0.0490 0.0619

15 .0300 0.0301 0.0306 0.0303 0.0306 0.0366

_ 20 0020 0.0206 00207 00207 0.0209 0023
25 00158 0.0157 | omat 00158 00159 00178

TABLE III. Experiments of the second class and second type.

n NS ND N RS DP AS
5 04136 0587 0.1866 12693 07449 22m
| 10 05109 10152 02233 27m 13854 50137
15 04282 12133 02005 40189 17846 78077
2 03843 1379 0193 5113 20985 104588
1z 03592 15083 0.1941 61502 297 131046
P s 02481 072 0.1106 0724 04 12184
- 10 02121 04065 0.0926 10451 06150 18660
i 15 01407 03824 0.0660 11967 0.5485 23122
- 2 01087 0.3686 0.0851 1302 06646 26762
T . 2 0.0895 03570 0.0490 1387 0679 29955
s 0.19% omt 0.087 0525 0383 02083
10 0.1354 02528 0.0613 0.5695 04221 0.9159
15 00787 0.19% 0057 0.5468 o 09413
i 2 0.0559 0170 0.0288 05275 03799 09528
B ) 00419 0.1506 00237 05080 03631 09622 .
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Figure 1. Uncertaintv-invariant transformations between
pro?abﬂities and nossibiiities based on log-interval
scales. :
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Inferenc: in fuzzy rule bases with conflicting ~
evidence
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Department of Telecommunication and Telematics,
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Sztoczek u. 2, Budapest H-1111, Hungary

1 Introduction

Inference based on fuzzy ’If ... then’rules has played a very important role
since when Zadeh [13] proposed the Compositional Rule of Inference and,
especially, since the first succesful application presented by Mamdani et al.
(10]. From the mid 1980’s when the 'fuzzy boom’ started in Japan, numerous
industrial applications appeared, all using simplified techniques because of
the high computational complexity. Another feature is that antecedents in
the rules are distributed densely in the input space, so the conclusion can be
calculated by some weighted combination of the consequents of the matching
(fired) rules. The CRI works in the following way: If R is a rule and A" is
an observation, the conclusion is computed by B* = Ro A* (o stands for the
max-min composition). Algorithms implementing this idea directly have an
exponential time complexity (maybe the prcblem is NP-hard) as the rules
are relations in X x Y, a k; x k; dimensional space, if X is k3, Y is k»
dimensional. For a detailed analysis of the complexity see [3].

The simplified techniques usually decompose the relation into k; pro-
jections in X; and measure in some way the degree of similarity between
observation and antecedent by some parameter of the overlapping. These
parameters are aggregated to a single value in [0, 1] which is applied as a
resulting weight for the given rule. Tke projections of rules in dimensions

*“This work was done while a visiting appointment at the Department of Computer
Science, Pohang Institute of Science and Technology. Pohang, Kyongbuk, P.O.Box 125,
790-330, Korea .
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Y; are weighted by these aggregated values and then they are combined in
order to obtain a resulting conclusion separately in every dimension.

This method is unapplicable with sparse bases as there is no guarantee
that an arbitrary observation matches with any of the antecedents (cf. {14])-
Then, the degree of similarity is 0 and all consequents are weighted by 0.
Some considerations for such a situation are summarized in the next sections.

2 The semantical interpretation of inference

The rules we deal with in this paper have the form
If X is A; thenY is B;’
Such a rule is represented by relation

Ri(z,y) = min{Ai(z), Bi(¥)}

. This interpretes R; as a 'fuzzy point’ in X x Y and so the whole rule
system describes in some way a fuizy function y = R(z). For a thorough
analysis of rule interpretations see [1].

An observation X is A®’is a fuzzy value of X and is transformed to
X x Y in the form of its cylindric extension

0(z,y) = A™(2)
. For rule system R = {R; :i € N,} the fuzzy conclusion in X x Y is
C(z,y) = mazi{min{Ri(2,3),0(z,y)}
in X x Y, and its projection to Y is o
B°(y) = sup.{maz;{min{Ri(,9),0(z,¥)}

This algorithm of inference estimates the value y = R(A(z)) by B*(y).
B*(y) # 0 only when the antecedent parts A; cover the input space, i.e.
for every z there is always at least one such rule R; that z € supp(R;). In
sparse rule bases [14], this kind of inference results in no conclusion.

The approach of Tiirksen dealing with this kind of problems [11] uses the
similarity measure of two fuzzy sets: similarity measure = (1+distance measure)™'.
With the usual crisp distance measures of fuzzy sets, the similarity measure
defined in this way has its range in (0,1], but it results in 0 when the two
fuzzy sets have disjoint supports. In the next, this idea will be extended to
arbitrary rule bases. A v
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3 Gradual metric variables and fuzzy distance of
fuzzy sets

Variables in real control applications have usually comparable and measur-
able values. In some other examples like when classifying tomatoes according
to ripeness on the basis of their colours (see (4, 6]), a similar comparability
and at least some 'pseudo-measurability’ appears.

In [2) a very interesting interpretation of the semantic contents of fuzzy
rules is proposed:

'IfX is A then Y is B’ = 'The more X is A the more Y isB’

The idea of gradual rules in [2} is in accordance with the analogical reasoning
in [11] can be interpreted as:

'The more similar is z to A the more similar is y to B.

Gradual rules exist because the variables appearing in them are gradual.
Graduality means mathematicaly that a full ordering can be defined over the
variables. In practical cases, domain and range of the variables are finite, so
maz{X}, min{X}, etc. exist. If X and Y are compound, their components
are bounded sets with a full ordering, so a partial ordering exists in both X
and Y:

z) < oy iff Vi: 11 < 22, etc.

Also the overall minima and maxima exist.

Beside ordering, measurability can be observed: as e.g., 1€e°C is far-
ther from 12°C than from 67°C, etc. So the distance of two values can be
expressed. In the case of many originally non measurable vari.ules, some
natural mapping of the range to the interval {0,1] provides virtual mea-
surability, Variables measurable in any sense will be named metric. Even
tomato colours or degrees of ripeness are metric so, as a mapping from
[deep green, deep red) ta [0, 1) can be introduced.

The fuzzy distance between linguistic (fuzzy) sets is defined with help of
the Resolution Principle, for pairs of fuzzy sets satisfying the partial ordering
A < B. < is introduced over 15(X.-), the set of all convex and normal fuzzy
sets of X;, so that for A,B € P(X;) A< Bif

Va € (0,1]: inf{Aa} < inf{Bo} and sup{Aa} < sup{Ba}

R <, a subset of P2(X), is the relation of all comparable pairs:

R< ={(A,B)lA,B € P(X),A < B}
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Given two fuzzy sets A and B in R4(A, B), the lower fuzzy distance of
Aand Bis

dr(A, B): Ry — P([0,1]) and

tiam®) =Y @/D(inf{As},inf{Bs}), 6 €[0,1] or 6 € [0, Vi
a€(0,1)

Similarly, the upper distance JU(A, B) can be defined. In the above, D
stands for the Euclidean (or, more generally Minkowski) distance of 4 and
B. (For more details see [9].)

Considering R from the point of view of the Resolution Principle, every
rule is resolved to a family of a-rules:

If X is Ay then Y is B’

The a-cuts are represented by k;- and k,-dimensional hyperintervals in X x
Y. Every hyperinterval has its infimum and supremum, so if « js set fix,
every rule can be unambiguously described by a pair of points in X x Y i.e.
one for the infima (’lower point’) and one for the suprema (’upper point’).
With finite level sets of 4; and B; it is sufficient to represent every rule by
2[Ui(A4; UAB,)| points. In such a way every rule base consisting of r rules
is represented in X x Y for given @ and L or U by exactly r points.

4 Linear interpolation of rules
Extended gradual rules can be interpreted by the simple linear ratio:
dist(A%, A;) : dist(A*, A;) = dist(B*, By ) : dist(B", B,)

ifA,-<A'~<AgandB,-<Bg

Interpreting dist as the fuzzy distance, the fundamental equation of linear
rule interpolation is introduced:

do(Ay, 4%) : do(4%, 4) = do(By,B") : da(B*, By)
where a € A4, UA, U Ap, U Ap,

Applying the definition of d, for L and U separately, altogether 2JA|
equations are obtained. These can be solved:

. -y Trthgay < (Bia) + do—ing (B, )
‘nf<{Ba} h

1
Tty T ToA A
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T P<{Bia} + gom i sup<{ Bra}

1

sup<{B;} = 1 "
dnU(Al,o -A;) dnU(A;-Al,o)

So the a-level set of the conclusion is given for every a:

B; = [infi{B"}, sup{B°}i

and so the fuzzy set B* can be constructed. Fig. 1 depicts a simple example
for interpolating the coclusion belonging to a non-overlapping observation.
On Fig. 2.a the a-distance (lower) for two comparable fuzzy sets is indicated,
b shows the fuzzy distance sets.

It is possible to extend this idea to the interpolation of 2k rules, further
on to various modified techniques of rule inter- and extrapolation. For more
details, see {4, 5, 7, 8].

5 Approximation of the conclusion by regression

A very difficult question is what happens if the rule base contains some in-
ternal conflicts. An extremal example for this is if for any @ and L or U there
are two different rules in the base for which min/maz A = min/mazAirq
but min/mazBiia # min/mazBiza. Then, any ‘interpolation’ results into
a 'perpendicular’ line in 1+ 1 dimensions and no defined extrapolation out-
side the two rules. Also, in the case of simply applying the interpolation
technique for two flanking rules it is not clear, which of the two must be
taken into consideration.

Although there is no formal strict contradiction still we face conflict-
ing evidence where the hypothetical approximation curve (e.g. polynomial
interpolation) has a too large "amplitude’ and the interpolated parts are
very far from the area in X x Y where the actual rules are located. Fig.
3.a presents a case with 6 rules where the approximation curve (using the
extension of the above interpolation technique) fits the rules very well. In
b however, the curve is rather different from the obvious behaviour of the
rules, it goes outside of the ’rule area’ and is rather far from the expected
R(z). In such cases, instead of eliminating conflicting rules the situation
should be accepted, as it is and the solution should be looked for in the
form of some compromise and simultaneous consideration of the conflicting
rules.
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How can conflicting rules be calculated with simultaneously? Avpossible
technique is based on linear regression (see e.g. [12]). As the rule system is
represented by a set of points in X x Y it is reasonable to compute the best
fitting straight line by the least square method. In 1 + 1 dimensions this is
defined by '

Tiyi — D2 ) yilr

y=az+b= Z Zyz,? —E:Zz'%f/ z+ () w/r-a) zi/r)
It is much more complicated to treat compound variables. If X has k,

and Y has k; components, the least square regression will result a k; x &,

dimensional hyperplane. The problem can be always decomposed into kz

ki + 1-dimensional problems where Y; is approximated by > j=18i;Z; + b;.

So it is sufficient to examine the case with compound X but simple Y.
The solution of this problem is given by

a=a]and a= Z ¥/r - aT[Z zi;] where
: Jj

a = ([zi; - Z zij/ )T [as, ~ }: i /]) " zi; - Z zii /)T [yi ~ Z %/}

i = l..r, j = L.k, [ ] stands for indicating a matrix, 7 is the transposed.

It is clear that this regression line or hyperplane gives a very rough
approximation of the rule base except if it has a really linear tendency.
(See e.g. the rule base on Fig. 4.) So it is more reasonable to calculate
y = az + b only for a given environment of the observation: a ’window’
around the respective value of A*. Then, we obtain the best fitting straight
line only for a restricted area. If the window is not too large, this leads to
a rather good partially linear approximation. (See Fig. 5 for the same rule
base.)

Let us compare the window-regression technique with the previous inter-
polation/extrapolation method. While in the latter it is sufficient to calcu-
late the approximation curve (maybe partially linear) once before starting
the inference/control algorithm based on the rules, it seems that because of
shifting the window it is necessary to calculate a new equation for y every
time when we have a new observation. This is painful, especially in the com-
pound case as the matrix inversion takes a very long runtime. If this is true,
the computational complexity of the newly proposed method is not compet-
itive with other techniques. Luckily enough, in the case of simple variables
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and a rule base with r rules it is sufficient to calculate mazimally 2r different
regression lines for any fized set of points and even in the compound vari-
able case the space X x Y; can be divided into mazimally 2r*! areas where
the regression hyperplane would be different. (a and lower/upper). Proof of
this statement is not very difficult. Fig. 6 depicts a simple example how to
divide X, for the rule base of the previous figures. A corsequence is that
when using trapezoidal rules and k, + k; variables, altogether Skgr{‘ regres-
sion hyperplanes are necessary before starting a real time control. So it is
guaranteed that computational time during the actual control is not higher
than in the case of straightforward approximation.

Significant disadvantage of this technique is that the function obtained is
not continyous: it is a broken line or broken plane and so the approximated
conclusion might change abruptly when the observation is only slightly dif-
ferent. (See Fig. 7 as illustration to this.) A solution of this problem is
presented by the application of the fuzzy window technique, i.e. the above
method is modified so that the environment of every observation has fuzzy
rather than crisp boundaries. So the abrupt appearance of a new rule in
the window when the observation is moved slightly is eliminated completely:
every rule appearing in the window is weighted by the membership value
attached to the location of that rule - depending on the location of the
observation - this weight is however very small if the window is defined
by a membership function smooth enough. For this purpose, a trapezoidal
window is rather suitable. (See Fig. 8. The areas with x = 0 and 1 are
indicated, in between, 0 < i < 1.)

It is a new problem now, how the least square method works with.

weighted points. Clearly, the gain in the smoothness and continuity of the
approximation function costs considerable computational time. Because of
the introduction of the fuzzy (continuous membership function) window, no
equivalent or extension of the above statement concerning the finiteness of
the number of possible regression lines exists. The regression line calculated
in terms of the observation is continuously changing. An exact examination
of the computational complexity will follow.

Instead of examining just the case of the fuzzy window regression we
present the solution of the general fuzzy regression, where points can be
weighted by arbitrary membership degrees.

Suppose that we have points (z;,3) (i = 1...r) and each has the mem-
bership degree p;. The straight line with least square sum of difference is
then
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Proof of this statement is by partial differentiation of the residual sum of
squares according to a and b.

Using the above, it is possible to approximate a L or U points of the
conclusion in a highly flexible way: even flexible windows can be applied
- as a matter of course with the computational time following from the
above equations. [t is not difficult to extend the above result for compound
variable cases. Instead of giving the rather complicated equation we just
indicate that the mean values 3°.z;;/r and ¥, y:/r must be replaced by
25 15%iil 2o i and T pivi/ 3o; i, resp. further on, in all the sums z; is
replaced by p;z;. It is a rather serious problem here that computational
complexity is high, in every step of inference the inversion of several r x k,
dimensional matrices is to be done ~ depending on the cardinality of lavel
sets at least 3 or 4 of them.

A further direction of this research is that o2 be calculated inside the
crisp window, moreover, by using y; for weighting, fuzzy variance is obtained
which can be used for measuring the degree of conflict in the evidence of the
given rule base - on level @ and L or U.
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GAUSSIAN MEMBERSHIP FUNCTIONS ARE MOST ADEQUATE
IN REPRESENTING UNCERTAINTY IN MEASUREMENTS_ _ / {
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Abstract. In rare situations like fundamental physics we perform experiments without knowing
what their results will be. In the majority of real-life measurement situations. we more or less know
beforehand what kind of results we will get. Of course, this is not the piecise knowiedge of the
type “the result will be between a — 6 and a + 8™, because in this case, we would not need any
measurements at all. This is usually a knowledge that is best represented in uncertain terms, like
“perhaps (or “most likely”, etc.) the measured value z is between a ~ é and a + §”.

Traditional statistical methods neglect this additional knowledge and process only the mea-
surement results. So it is desirable to be able to process this uncertain knowledge as well. A
natural way to process it is by using fuzzy logic. But there is a problem: we can use different
membership functions to represent the same uncertain statements, and different functions lead to
different results. What membership function to choose?

In the present paper, we show that under some reasonable assumptions, Gaussian functions
p(z) = exn(—Pz?) are the most adequate choice of the membership functions for representing
uncertainty in mea-nrements. - This representation was efficiently used in testing jet engines for
airplanes and spaceships.

' 1. INTRODUCTION

Usually in measurement situatiors there is some prior knowledge. In rare situations like
fundamental physics we perform experiments without knowing what their results will be. In the
majority of real-life measurement situations, we more or less know beforehand what kind of results
we will get. Of course, this is not the precise knowledge of the type “the result will be between
a—é and a + 6", because in this case we would not need any measurements at al. This is usually
a knowledge that is best reresented in uncertain terms, like “perhaps (or “most likely™, etc.} the
measured value z is between @ — § and a + 6”.

Traditionally the uncertain prior knowledge is not used in measurement processing.
Traditional statistical methods neglect this additional knowledge and process only the measurement
results. So it is desirable to be able to process this uncertain knowledge as well.

The usage of fuzzy logic and related problems. A natura! way to process uncertainty is by
using fuzzy logic [Z65]. This way we represent every statement of the type “most likely, |z — al <8
by a membership functior u(z) that for each z gives vs a degree to which we are certain that this
particular z satisfies the given condition. But there is a problem: we can use different membership
functions to represent the same uncertain statements. What membership function to choose?

What we are planning to do? In the present paper, we show that under some reasonable as-
sumptions, Gaussian functions u(z) = ezp(—B2%) are the most adequate choice of the membership
functions for representing uncertainty in measurements. This representation was efficiently used in
testing jet engines for airplanes and spaceships.
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2. MOTIVATION OF THE FOLLCGWING DEFINITIONS

We must have in mind that different experts can have different opinions. Therefore
the final resulting knowledge about the value of a physical quantity does not consist of a single
statement, but can be formed by adding several statements of several expert, e.g., “most likely,
|z —a;1] € 67, “most likely, |z — az] < 8;”, ... The resulting statement is “most likely, |z ~a,| < 61,
and most likely, |z —a3| < §,,..." In order to represent this resulting knowledge we must choose some
operation * for &. Then the resulting membership function will be equal to p(z) = u(z)*uz2(z)*...,
where p;(z) corresponds to the opinion of i-th expert.

What &—operation to choose? Experimental results given in [HC76}, [077], and [Z78], show
that among all possible operations a,b — min(a,b) and a,b — ab are the best fit for human
reasoning.

The min operation does not seem to be adequate for our purposes, because if we use min, then,
e.g., the degree, to which a function z(t) satisfies the condition “for all ¢, most likely |z(t)] < M”,
is equal to the minimal of the degrees of the statements “most likely, |z(t)] < M™ for all t. This
minimum is attained when the value of |z(t)| is the biggest possible. Therefore, the function z;(t)
that is everywhere equal to 2M, gets the same degree of consistency with the above-given rule, as
the function that is almost everywhere equal to 0, and is attaining the value 2M only on a small
interval. Intuitively, however, for the first function, for which the inequality is not true in a single
point, our degree of belief that z(t) satisfies this condition is prictically 0, while for the second

function, for which this inequality is almost everywhere true, our degree of belief must be close to
1.

So, using min in our problem is inconsistent with our intuition, and therefore we must use the
product for &.

Comment. Other arguments for choosing different & 6pera.t.ions are given in our previous publica-
tions [KR86) and [KQLFLKBR92].

We want to describe membership functions for the following statements. We are inter-
ested in describing statements of the type “most likely, |z — a] < §”, where z is unknown, and a,§
are known values. So we must describe, to what extent any given value z satisfies this condition.

All these membership functions can be obtained from one of them. Evidently, z satisfies
the inequality |z — a| < § if and only if the value y = (z — a)/é satisfies the inequality |y| < 1.
Therefore, it is natural to assume that the statement “most likely, |z — a| < 6” has the same degree
of belief as the statement “most likely, ]y} < 17, where y = (= — a)/8. So, if we will be able to
describe a membership function u(y) that corresponds to the statement “most likely, |y| < 17, then
we will be able to describe our degree of belief u;(z) that z satisfies the condition “most likely,
|z — a| < 8” as u((z — a)/d). So the main problem is to find an appropriate function u(z).

What if we ask several experts. A statement “most likely, |z ~ a} < §” means that an expert
estimates z as a, and his own estimate of his precision is & §. Since such estimates are often very
crude, it is reasonable to ask the opinion of several experts. After we have asked k experts, we get
k statements of the same type: “most likely, jz — ;]| < 6;”, where i = 1,2,...,k, and a; and §; are
the estimates of the i-th expert. The corresponding membership functions are u((z — a;)/é;).

Since all of them are experts, we believe in what all of them say, and therefore our resulting
knowledge is: “most likely, |z — a;| < 61, and most likely, |z — az| < &, and ...” Since we
agreed to represent “and” as a product, the resulting memberchip function is equal to »(z) =
u((z — a1)/81)ul(z — az)/82)...u((z — ax)/bx).
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In case we have a precise knowledge, and each of the experts describes an interval, in which
the unknown value z must be, the resulting knowledge is that z belongs to the intersection of all
these intervals. This intersection is itself an interval, and therefore the only effect of asking several
experts is that we decrease uncertainty. We do not change the form of the knowledge: it is still an
interval, and in principle one smart expert could have named it from the very beginning.

In a similar way, it seems reasonable to assume that in the general fuzzy case, by combining
the opinions of several experts, we do not seriously add any additional knowledge; we may diminish
slightly an uncertainty domain for the unknown z, but that’s all.

How to describe this argument mathematically: we must apply normalization. In math-
ematical terms, we would like to postulate that the resulting membership function »(z) coincides
with one of the functions u((z — @)6), and in principle it could represent the opinion of just one
smart expert.

We cannot, however, posttlate precisely that. The reason is as follows. The bigger y, the
smailer is our belief that “most likely, |[y] < 1”. So, the function p(y) must be monotonously
decreasing for y > 0. Its maximum m is attained, when y = 0. So, when we combine the two
statements “most likely, |z| < 17, and “most likely, |z — 0.3] < 17, the resulting membership
function v(z) = p(z)pu(z — 0.3) is always smaller than m?, because both factors are < m, and for
z # 0 the first factor is < m, and for z = 0 the second. So even if m = 1, the function v(z) never
attains m, and thus it cannot be equal to u((z — a)/é.

The solution to this problem is well known in fuzzy logic: we can normalize v(z), i.e., turn
from v(z) to v'(z) = Nv(z), where the normalization constant N is equal to N = 1/(maz,v(y)).

Comment. A motivation for using namely this type of normalization is given in [KQLFLKBR92].
Now we are ready to formulate our demand.

3. MATHEMATICAL FORMULATION OF THE PROBLEM
AND THE MAIN RESULT

Definition 1. By a membership function we will understand a continuous function y(z) from the
set R of all real numbers into the interval [0,1].

Definition 2. We say that two membership functions u(z) and v(z) are equivalent if u(z) = Cv(z)
for some constant C > 0.

Definition 3. We say that a membership function u(z) is adequate for describing uncertainty of
measurements if it satisfies the following conditions:
e it is symmetric (u(—-z) = u(z)),
e p(z) is strictly decreasing on (0,00) and tends to 0 as z — oo
e for every finite sequence of pairs (ay,8 ), (az,62), ..., (ak, 8;) there exist @ and & such that the
product p((z — a1)/61)p((z — a2)/82)...p((z — ax)/8x) is equivalent to u((z — a)/é).

THEOREM. Any membership function, that is adequate for describing uncertainty of measure-
meats, is equivalent to exp(—pz) for some 3 > 0.
(The proof is given in Section 5).

Comment. So we conclude that Gaussian functions are the only adequate membership functions.
These functions are really widely used [K75], [BCDMMMS85], [YIS85], [KM87, Ch. 5], ete. Al-
ternative explanation of why Gaussian functions are used is given in [KR86] and in Section 8 of
[KQLFLKBR92).
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4. HOW THIS RESULT CAN BE USED AND HOW IT WAS USED

How it can be used. If for some physical quantity z several experts give their estimates a,, aj,
...y @k, and they estimate the precision of their estimates as correspondingly 6;, 62, .... 6k, then the
resulting membership function is equal to p(z) = ezp(—B(z — a)?/§?), where

§=(7 462+ ..+ 67"V and a = (81677 + ... + akb; /(67 + .. + 50).

Comments. :

1. These formulas can be easily obtained by explicitly computing p(z) as a result of normalization
of the product p1(z)p2(z)...ux(z), where p;(z) = ezp(—PB(z — a;)2/6?).

2. These formulas are surprisingly identical with the statistical formulas that correspond to the
case when we have k statistical estimates g; with precisions §; and apply the least squares
method ¥ ,(a — a;)?/6} — maz, to get the resulting estimate for a. This is not such a big
surprise, because least squares method is based on the assumption of a Gaussian distribution.
The positive side is that not only the resulting formulas are extremely simple to implement, but
maybe there is no need to implement them at all, because we can copy the existing statistical
software.

How this result was actually used. Expert estimates are extremely important in testing the
jet engines. The reason is that an important part of this testing is trying to figure out what is
going on in the high-temperature regions, and the temperatures are so high there that we cannot
place any sensors. So the only available information about these regions consists of the experts’
estimates.

One of the authors (L.R.) used this fuzzy representation of uncertainty in designing software
for the automatized jet engines testing system IVK-12 [KR86). This system was actually used to
test jet engine for aircraft and spaceships.

Possible other applications. One area where we believe this approach can be useful is when
we determine the position of a Space Shuttle. The existing systems use several different types of
sensors, with different precisions, and often with only experts estimates of that precision. In order
to make appropriate control decisions we must combine these estimates into a single value. Fuzzy
approach allows us to do that.

5. PROOF OF THE THEOREM

Comment. This proof contains some mathematical ideas from our previous publications [KR86)
and [KQLFLKBR92).

1. Assume that p(z) is 2n adequate function in the sense of the above definition. It is easy
to check that if u(z) is an adequate choice, then the result u(z)/(maz u(y)) of its normalization is
also an adequate choice. Since u(z) is monotone, this maximum is attained for z = 0, and therefore
the result of this normalization satisfied the condition u(0) = 1.

So, without losing any generality, we will further assume that x(0) = 1.

2. From the definition of an adequate function it follows, in particular, that u(z)u(z) =
Cu((z - a)/6) for some a,C and 6. The left hand side attains its maximum (= 1) at z = 0, the
right-hand side attains its maximum (that is equal to C') for z = a. Since these two sides are one
and the same function, we conclude that a = 0 and C = 1, i.e., that p*(z) = u(k.z) for some
consiant k; (= 1/6). For {(z) = log yi(z) we conclude that 2i(z) = I(k;z).

Likewise, if we consider 3, 4, etc terms, we conclude that 3l(z) = l(k;z), 4l(z) = l(k4z), etc.
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3. The function u(z) for z > 0 is monotonously decreasing from 1 to 0. Therefore, I(z) is
monotonously decreasing from 0 to —oo. Since u is continuous, the function I(z) is also continuous,
and, therefore, there exists an inverse function i(z) = I~!(z), i.e., such a function that i(i(z)) = «
for every z.

For this inverse function, the equality nl(z) = I(knz) turns into i(nl(z)) = i(I(kn2)) = kpz =
kai(l(2)). So, if we denote I(z) by X, we conclude that for every n, there exists a k, such that
i{(nX) = kni( X).

If we substitute Y = nX, we corclude that i(Y) = k,i(Y/n), and therefore, i(Y/n) =
(1/ka)i(Y).

From these two equalities, we conclude that i((m/n)X) = (1/ka)i(nX) = (km/ka)i(X). So,
for every rational number r, there exists a real number k(r) such that i(rX) = k(r)i(X).

Therefore, the ratio i{rX)/i(X)is constant for all rational r.

4. Since #(X) is a continuous function, and any real number can be represented as a limit of
a sequence of rational numbers, we conclude that this ratio is constant for real values of r as weil.
Therefore, for every real number r there exists a k(r) such that i(rX) = k(r)i(X).

All monotone solutions of this functional equation are known: they are i{(X) = AXP for some
A and p [A66). Therefore, the inverse function I(z) (z > 0) also takes the similar form /(z) = Bz™
for some k and m. Taking into consideration that u(z) and hence /(z) are even functions, we
conclude that I(z) = Bjz|™ for all z.

5. Now, from the demand that a function u(z) is adeqnate, we conclude that for every a > 0 we
have u(z — a)u(z + a) = Cp((z — a;)/6) for some a; and 4. The left-hand side of this equation is an
even function, so the right-hand side must also be even, and therefore a; = 0. So, p(z —a)pu(z+q) =
Cu(z/6). For z = 0 we get p(a)u(a) = C. Turning to logarithms, we conclude that for every a,
there exists a k(a) such that [(z ~a)+{(z +a) = I(k(a)z) +2l(a). If we substitute here I(z) = B|z|™,
and divide both sides by B, we conciude that |z — a{™ + |z + a|™ = k(a)™|z|™ + 2a™.

6. When z > 0, and a is sufficiently smali, then z + a, z, and z - a are all positive, and,
therefore, (z —a)™ + (z +a)™ = k{a)™z™ + 2a™. If we move 2a™ to the left-hand side, and divide
both sides by z™, we conclude that (1 - (a/z))™ +(1+(a/z))™ - 2(a/z)™ = k(a)™. The left-hand
side of the resulting equality depends only on z = a/z, the right-hand side only on a. Therefore, if
we choose any positive real number A, and take @’ = Aa and z’ = Az instead of a and z, then we
can conclude that the left-hand side will be still the same, and therefore, the right-hand side must
be the same, i.e., k(a)™ = k(Aa)™. Since A was an arbitrary number, we conclude that k(a) does
not depend on a at all, i.e., k(@)™ is a constant. Let us denote this constant by &.

So the equation takes the form (1 — z)™+(1+2)™ = k+22™. When z — 0, then the left-hand
side tends to 2 and right-hand side to k, so from their equality we conclude that & = 2.

The left-hand side is an analytical function of 2 for z close to 0. Therefore the right-hand side
must also be a regular analytical function in the neighborhcod of 0 (i.e., it must have a Taylor
expansion for z = 0). Hence, m must be an integer.

The values m < 2 are impossible, because for m = 0 our equality turns into a false equality
2 =3, and for m = 1 it turns into an equality 1~ 24+ 1 + z = 2 + z, which is true only for z = 0.
Som> 2.



Since both sides are analytical in z, the second derivatives of both sides at = = ® must be
equal to each other. The second derivative of the left-hand side at z = 0 is equal to m{nz— 1). The
second derivative of the right-hand side is equal to 2m(m —~ 1)2™~2. If m > 2, then this derivative
equals 0 at z =0 and therefore cannot be equal to m(m —1). So m > 2, and m camot be_greater
than 2. Therefore, m = 2.

So, I(z) = Bz®, and hence u(z) = exp(—pz*) for some § > 0. Q.E.D.
6. CONCLUSIONS

How to represent in mathematical terms uncertain numeric statements about the walue z of
a physical quantity, e.g., statements of the type “most likely z is between a — % and a + 677
Reasonable arguments lead us to the conclusion that the most adequate memberskip fumctions for
such statements are Gaussian functions p(z) = ezp(—B(z — a)?/6%).

If we use these membership functions, then we can apply simple algorithms to combines the
opinions of several experts. Namely, if k experts give estimates ay, ..., a, and they estimate the
precision of their estimates as correspondingly 81,82, ..., 6k, then the resulting membershilp function
is equal to p(z) = exp(—p(z ~ a)?/8%), where 6 = (672 4652 + o+ 85%)71/2 and

a = (01677 4 o + a6 ) /(7% + . + 677

These formulas coincide with the ones that result from applying the statistical least squares
method, so we do not even have to write a new software.

This approach was applied to testing jet engine for aircraft and spaceships, and it may be
useful in many other applications, e.g., in combining the results of several coordinate amd distance
sensors in spaceship navigation.
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Life Insurance Risk Assessment Using a
0 Fuzzy Logic Expert System
\7 - \ Luis A. Carreno and Roy A. Steel
Togai Infralogic, Inc.
Abstract

In this paper, we present a knowledge based system that combines fuzzy
processing with rule-based processing to form an improved decision aid for cvaluating
risk for life insurance. )

This application illustrates the use of FuzzyCLIPS to build a knowledge based
decision support system possessing fuzzy components to improve user interactions and
KBS performance. The results employing FuzzyCLIPS are compared with the results
obtained from the solution of the problem using traditional numerical equations. The
design of the fuzzy solution consists of a CLIPS rule-based system for some factors
combined with fuzzy logic rules for others. This paper describes the problem, proposes a
solution, presents the results, and provides a sample output of the software product.

1.0 Introduction to FuzzyCLIPS

FuzzyCLIPS adds fuzzy processing capability to CLIPS 5.1. The architecture is a
separatc processing clement similar to that used to incorporate object-oriented
programming into CLIPS. The basic fuzzy constructs and function calls can be written
intermixed with usual CLIPS statements. Principal fuzzy constructs define rule bases and
membership functions. A fuzzy membership function can be associated with a universe
of discourse. This improvement allows readable terms such as "high" and "low" { be
used in different contexts. There are also functions by which a CLIPS program can test
the degree of membership of a sensor value, execute a fuzzy rule base that retums
defuzzified control values to CLIPS and, optionally, assert facts giving belief values for
the possibilities that might be useful in an expert system. In addition, C interface
functions support embedded fuzzy applications that can invoke the fuzzy processor
directly for speed in embedded control applications. FuzzyCLIPS is designed to be
compatible with future CLIPS versions. Like CLIPS, it can operate as a stand alone
program or be embedded in a larger application.

2.0 Problem Statement

An insurance company needs to assess the degree of health risk associated with
each client based on physical characteristics such as height, weight, and age and exercise,
smoking, drinking, and eating habits. The output risk value serves as the basis for the
determination of insurance premiums billed to clients. Those premiums have a base rate
(perfect health, good habits, 35 years old) and an increment to adjust the premium based
on the risk. A system that produces a risk value between 0.0 and 1 suffices to set a net
rate. The equation is

Cost to Insure
Client = Base Rate + ((Risk /Base Risk)-1)*Increm.ent (D
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finesse.

The relation between decision factors and the rate change need be neither incremental nor
linear, i.e., separate consideration of the decision factors may not determine a change in
rate that can be simply summed to determine the net rate. This means that the questioning
of the client must be controlled; it makes no sense to continue to ask a client about all
factors if a decision on rates is possible at some intermediate point in the interaction.
Complex nonlinearity and interdependence of the factors mean that computer-based
decision aids are useful to a human agent and that sharp decision boundaries such as
thosepmducedbyanomalmlebasedsystcmmsensiﬁvewsmallunceminﬁesinme
input data. Fuzzy logic provides a basis for accommodating such uncertainty with

The input variables of the system are of two different types: base and incremental.
The .se type of input variables are Age (A), Weight (W), and Height (H). A derived
internal variable is the body mass index (BMI) that estimates fitness or body fat content.
Incremental input variables deal with particular habits and characteristics of prospective
clients. The following are considered such variables in the present example exercising
(E), dairy products intake (DI), red meat intake (MI), vegetable intake (VI), fat/sweet
intake (FSI), smoking (S), and drinking (D). The output of the system is the degree of
risk (R).

3.0 Traditional Numerical Solution

For the traditional method solution, we treat all of the variables as a number input
or a selection from a finite, discrete, closed set of possibilities. Each variable is
represented as a lookup table of intervals where the value of the correspending is
specified for each interval. The following table presents the values of the contribution to
risk due to Age,

age age-risk
0t 30 0.25
31to 60 0.5
611090 0.75
>90 1.0

We note that this table could be used in a rule-based knowledge system (KBS) to provide
rules of the form

(age ?age&:( <= ?age 30) => (assert (age-risk .25))
(age Tage1&:( > Tagel 30))

(age Tage2&:(<= Tage2 60))(test (!= agel 7age2))
=> (assert (age-risk =0.5))

etc.

For discrete selections, the table contains the risk value assigned to each value. An
example corresponding rule is ’ '
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{smoke- habit 7input&((eq ?input O)li(eq ?input S)...))
“=> (assett (smoke-factor 0.25))

When each factor has been ecvaluated, the total risk is evaluated as a weighted
combination of the risks due to various factors where the value of the weights provide
another knowledge component of the decision support system.
3.1 Body Mass Index
The inputs, Height and Weight, are used to obtain the body mass index (BMI).
This measure determines if a person is overweight or not. BMI is calculated by dividing
the Weight in kilograms by the square of the height in meters, BMI = Weight/(Height)2.
The following table shows the scale used to measure BMI and the corresponding
BMI-risk that is used later to calculate risk.

BMI Condition BMI-risk
under 23 Underweight 0.25
23-25 Ideal 0.0
25-30 Overweight 0.75
over 30 Obese 1.0

3.2 Mathematical Model for Traditional System

In a traditional system, the first step in the solution of the problem is to define a
mathematical relation between the inputs and outputs of the system. The objective is to
obtain a numerical value that represents the risk of a person having medical problems due
to his physical characteristics and eating habits. Risk is defined as having a range of
[-0.357,1]. The various factors are also assumed to have values in the [0,1] range by
mappings similar to those presented above for age and BMI. A risk measure of 1

represents the maximum degree of risk, on the contrary, a measure of 0 or less represents
the minimum degree of risk.

In general,

Risk = wgqr*(BMI-risk) + wg*(Smoking-risk) + wpy*(Drinking-risk) +
wE"(Excrcise-ﬁsk) + wy*(Vegetarian-risk) + wpyr*(Dairy-Products-
Intake-risk) + wyq*(Red-Meat-Intake-risk) + wrsr* (Fay/Sweet-Intake-
risk) + w5 *(Age-risk) )

Constants wg; and Wy are negative because they reduce total risk. The other weights are

expected to be positive. Values of the weights are based on the corresponding factor's
effect on the overall degree of health of a person.

3.3 Effects of Habits (Incremental Inputs)

In addition to age and BMI, factors reflecting a person's habits contribute to risk
assessment. These are generally harder to quantify and are often described by qualitative
terms such as "I smoke a little" or "I cat lots of vegetables.” There are two approaches
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that are used to handie such data. The normal one is to attempt to quantify the habit in
terms of frequency of participation and quantity of material, time, or activity concerned,
much as the scientist who studies effects of various habits on health risk quantifies inputs
to the evaluation experiments. The other approach is tc classify estimates of activity
frequency and level into literal categories from options to the respondent. For example,
exercise might be analyzed from a more complicated user interface

Level Frequency Type
_aerobic _very frequent _walking or treadmill
_strength building  _frequent _jogging
_other _ sometimes _lift weights
_active work _occasionally _exercise machine
_do not exercise _never _water sports
_team sports
_skating
_skiing

The disadvantage of such an approach is that a need for understanding the respondent’s
meaning for a term means ambiguity in the input data and stress for the respondent in
deciding which category fits his case. In general, more complex interfaces are required to
provide sufficient detail or correlations from which to extract information about wiether
the user understands or is trying to bias answers in his favor.

A user interface in which the user chooses values for frequency and intensity
against an arbitrary scale (c.g., "on a scale of 1 to 10, how much do you drink?)
introduces the potential to fuzzify the input to conduct reasoning with correlation and
interpolation between benchmarks or way points.

Qualitative values indicating the change in risk due to various habits is shown
below.

Health Risk
Risk Increases Nentral Risk Decreases
Smoking High Med None
Drinking High Med None
Exercising Low Med High
Vegetable Intake Low Med High
Red Meat Intake High Med Low
Dairy Intake High Med Low
Fat/Sweet Intake High Med Low

4.0 Fuzzy Logic Solution :

In a fuzzy logic based system, an expert defines the rules. Such rules are used to
describe the characteristics of the risk assessment for each factor. Later on, the input
variables are matched against the sct of rules to produce the appropriate output. Each onc
of the fuzzy variables contributes to the output of the system depending on how many
rules are fired for each particular input variable. Fig. 1 depicts a schematic fuzzy decision
support system. For fuzzy reasoning we use a max-dot inferencing technique, and
centroid defuzzification technique.



For this particular example, four different sets of fuzzy rules are defined. The first
rulebase relates a risk_1 to age and BMI. The second rulebase relates a risk_2 to smoking

* and drinking habits. The third rulebase relates d risk_3 to the amount of exercise and

intake of vegetables. The last rulebase relates a risk_4 to intake of dairy products, red
meat, and fat and sweet products. A fifth rulebase relates risks 14 to the overall risk to
complete the risk assessment. The importance of breaking down the problem into smaller
related groups is the fact that the numter of rules needed to control the system decreases

dramatically. In our example, the number went down from 4* 37 (8748) rules to a
maximum of 313 rules.

After calculating the BMI and having obtained the age from the user interface, an
ifitial measure of risk, risk_1, is obtained. This measure sérves as the basis for
subsequent decisions. If the risk obtained is considered by the system as very high, no
further inquiries of the user are necessary. On the other hand, if the risk obtained is
considered low, medium, or high, further inquiries into the client’s habits are necessary to
produce a more meaningful result.

The output of the system consists of a crisp valuc for Risk in the range [0, 1]. The
system also produces a truth value associated with each cutput fuzzy set, i.c., the degree
to which each fuzzy set defining risk contributes to the output value of risk.

-~
RBase2}.q.

¥
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!
-
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Fig.1 A schematic view of the fuzzy logic risk assessor
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4.1 Membership Functions
In. order to solve the problem using fuzzy logic mc.hods, we defined sets of
membership functions associated with each variable

A Lo, Med, Hi
BMI Under, Ideal, Over, Obese
Risk_n Low, Medium, High, Very High

The universe of discourse for cach of the above fuzzy variables is [0,1] for each risk
(Fig. 2). [0,40] for BMI (Fig. 3); and [0,100] for Age (Fig. 4).

Low Med HI VeryHi

Fig. 2 Risk Membership Functions

Under Ideal Over Obese

BM!

Fig. 3 BMI Membership Functions

Fig. 4 Age Membership Functions
4.2 Rules

A sample of the fuzzy logic rule set for Risk, based on all the inputs as a whole,
can pe seen in the following table.
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VIL_ DL

RISK A BMI E ML %I S D
Lo Ideal Med Hi Med Lo Lo Lo Lo
Low ‘Lo  Ideal H Med Lo Lo Lo Lo Lo
o Ideal lo Hi Lo Lo Med Lo Lo
Med ideal lo Lo Hi Hi H Lo Lo
Medium Med Over Med Med Lo Lo Med Med Lo
Lo Over Lo Lo Med Hi Hi Lo Med
Med Obese Lo H Lo Lo H H Lo
High Med Over lo Lo Med Hi Hi Hi Med
Hi  Over Lo Lo Hi Med Med Med Med
Med Obese lo Lo Lo Hi H Med Hi
Very Hi Obese lo Lo Hi i H Hi Med
High Hi  Over Lo Lo Hi Hi H H Hi

As explained earlier, a rulebase with that many inputs is difficult to implement
due to the large number of possible combinations of the input variables. Examples of
fuzzy rules, using the alternative approach of breaking down the input variables into
smaller and related groups, is shown next.

IF AisHiand IF S is HI and
BMI is Gbese DisL

THEN Risk_1 is Very High THEN Risk_2 is High

IF E is Hi and IF MlisL and
VlisM DIlis M and

THEN Risk_3is Low FSIisM

THEN Risk_4 is Medium

In the application, five rulebases are defined. As explained earlicr, cach one produces a
partial risk that is merged at the end of processing to produce a final assessment of risk.
Such risk is compared with an ideal risk called base risk. The base risk is the risk
a~sociated with a 35 year old with the following physical characteristics and
drinking/eating habits ideal BMI, non smoker, low consumption of alcoholic drinks, low
consumption of dairy products, red meat products, and fat/swect products, high
consumption of vegetabies, and high amounts of exercise. The total risk of a particular
person is calculated and substituted in Eq. (1) to produce a premium amount.

4.3 User Interface

There are two special cases in the processing of the problem. First, if the initial
risk, based on age and BMI, is greater than 0.8 the risk is considered very high.
Therefore, no need for further processing of the system. Second, if the initial assessment




of BMI is greater than 30, meaning the person is obese, questions related to the habits of
consumption of dairy products, red meat, and fat/sweet products are omitted. Otherwise,
the user interface is the same as that for the numerical method.

5.0 Results and Conclusions

- To compare the methods, sample data was created and processed by both versions
of the program. The sample data consists of a group of persons with the same eating and
exercise habits, the only variant is the age of the individuals. The constant characteristics
can be seen in the following table.

BMI S D YI__ESL E DI M
Ideal no L H L H L L

. The values of age used were in the range {20, 100]. The results were as expected. For the
traditional method, we can see abrupt changes in the value of risk associated with ages at
the edges of the intervals, as observed in figure 5, the value of risk jumps from age 30
and then continues constant until it reaches the age of 60 where it jumps again. The
process is repeated at age 90. _

For the fuzzy logic solution, as observed in figure S, no sharp differences are
produced a: any specific age, i.c., the values of risk increase smoothly along the whole
universe of discourse. The fuzzy system produces more realistic values for different ages,
specially for those cases in which the age..varies from 30 to 31, 60 to 61, or 90 to 91.

Risk

Traditional Method

Age 1

JU

Fuzzy Logic Method

2425 313 a1 1 6061 1 8081 9091

Age 2

Fig. 5 Risk for Traditional Vs Fuzzy Logic Method




6.0 Sample Output

The application program described in this document, was written using the alpha
version oi FuzzyCLIPS. It generates an interactive session, in which the user is
questioned in order to gather information about a client's physical characteristics,
exercise habits, and eating and drinking habits.
After receiving all of the information needed, the partial values of risk are determined,
and a final summary report is produced. It consists of the four partial risks and its values,
the total value of risk, the value of the base risk, explained earlier, the ratio of the total to
vase risk, the annual insurance premium, and the individual cortributions of each ’
membership functlon by risk and its predicate values.

e she e e sl e ohe 2k e e e e ol s o e e oo sl sde ol ol ol ol -

Rkkhhken RRRRRREERRESRERRERS

SUMMARY
Risk based on
age and bmi > 0.318
smoking/drinking ============> (.600
exercise/vegetable intake =======>0.400
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total risk => 0.547
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